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Problem Statement And Motivation

M Problem: Reconstruct phase from given magnitude spectrum

Phase reconstruction
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B Many algorithms only process/generate the magnitude spectrum of speech, e.g. in
— Speech enhancement and speech separation
— Speech synthesis and voice conversion
ISTFT: Inverse short-time Fourier transform
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Introduction

B Phase reconstruction approaches

— Consistency-based approaches

= Exploit properties of overlapping frames within STFT,
e.g., [Griffin et al., ICASSP1984]

— Model-based approaches
» Based on models of the target signal

Model-based

DNN-
based

Consistency-based

B Deep neural network (DNN)-based approaches, that estimate
— Discretized phase [Takahashi et al., Interspeech2018]
— Continuous phase [Takamichi et al., IWAENC2018]
— Complex-valued spectrum [Oyamada et al., EUSIPC02018]

B Here: Two-stage phase reconstruction system based on [Masuyama et al., ICASSP2020]
1. Estimate phase derivatives using DNNs
2. Reconstruct phase spectrum from its estimated derivatives
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Two-Stage Phase Reconstruction System

Block diagram of the overall system
First stage Second stage

Ve o Wi

Feature Mlog Feature DNN;¢ ~ SC . Phase Recon- 95

Extraction Preprocessing DNN l/)gd . 1 ) l/)gd | struction Method
gd 7 SC

\ / .

[ i | ™

[p——

l/J'f E *
AG) 5 sC B i
! Only used during training

_____________________________________________________

N

N

WY;r: Instantaneous frequency (IF)
Pgq: Group delay (GD)
M: Magnitude spectrum
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Two-Stage Phase Reconstruction System
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B Proposed improvements:
(1) A novel regularized cosine loss function
(2) Shift correction (SC) as a pre-processing step for the phase derivatives during training
(3) A novel phase reconstruction method
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Two-Stage Phase Reconstruction System
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Phase derivatives estimation

M For discrete-time signals the phase derivatives can be approximated by:
— Instantaneous frequency (IF):

l,bif(k, m) = At ¢(kr m) = ¢(kr m) _ ¢(k, m — 1)

— Group delay (GD):

l/)gd(k! m) = Af ¢(k) m) — ¢(kr m) — ¢(k -1, m)

B Two equally structured and simultaneously trained DNNs using combined loss:

Liotal = L(lpif - lljif) + L(lpgd - lljgd)
B Phase and its derivatives are periodic variables and are typically wrapped to [—m, )

» L should consider this ambiguity of 2w
» L should have a limited solution space
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. First stage
x(t) Feature | |Miog Feature ]_[} DNNj¢ ] ;J:f [ sct ;}if ( Phase Recon- ]_Ni)
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Novelty (1): Regularized Cosine Loss Function (e n i e ) GECE
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B Regularized cosine function (Novel!): Lk ® ©

Lreg(89) = ) —cos (&, m)) + 2 (& Ck, m))’ f; g g
km reg

-

Leos(A) . Lyvsg: Mean-squared error
Here: A = — Lcos: Negative cosine func. [Takamichi et al., IWAENC2018]
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Novelty (2): Pre-Processing Via Shift Correction (SC)

Shift correction (SC)
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B For the IF, a systematic offset can be described by the shift theorem of the discrete Fourier transform (DFT):

2T
x(n—5) o X(k)-e/ N

B For the GD, a systematic shift of T can be observed empirically

B Both shifts can be corrected:
Wik, m) = W (iel,m) - = k)
Paa(k,m) = W(Pgq(k,m) + m)
» Reduced standard deviation and mean close to O

» Number of values near +m is reduced
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Second stage
Vi
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Phase reconstruction from its estimated derivatives
Phase spectrum

B Combine ;s and 1/3gd such that a consistent phase spectrum ¢ is achieved

k—1
B Averaging of weighted estimates from P paths (Novel!):
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Time
¢, Estimation of the pth path
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Second stage
i _ Vi
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Novelty (3): Phase Reconstruction Method
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Phase reconstruction from its estimated derivatives
Phase spectrum

B Combine ;s and 1/3301 such that a consistent phase spectrum ¢ is achieved
k—1

B Averaging of weighted estimates from P paths (Novel!):

& . +1;b\gd(klm)
¢(k, m) = / z ap(k’ m) . e] ‘Pp(k,m) g QDZ\L
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W Quality indicator a,, e.g., based on magnitude: g (et 1, m)f-

a,(k,m) =Mk —1,m)
a,(k,m) = M(k,m — 1) el
as;(k,m) = l_r{rli{lO}M(k +1,m+10)

+ie(k+1,m)

Time
¢, Estimation of the pth path
M: Magnitude spectrum
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Evaluation

Experimental setup

Dataset VCTK database [Veaux et al, 2017] preprocessed (e.g. resampled to 16 kHz)

STFT .

DNNs °

Quality Measures °

18.5 hours training data
3.5 hours validation data

640 samples Hann window
160 samples window shift
640 DFT size

Normalized log magnitude of current frame and frames at +2, +1 as input features
3 hidden layers

1024 hidden units per hidden layer

Varying activation function: Sigmoid, tanh, ReLU, LeakyRelLU, gated linear, gated tanh
Varying loss function: Lysg, Lcoss Lreg

Accuracy: mean cosine error
Objective: PESQ and STOI
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Evaluation — First Stage

Influence of the loss function

W Lysg is inappropriate for phase estimation
W L., fails in two cases for GD estimation
B Lyeg stabilizes training of GD compared to L4

Influence of the shift correction

B Drastically increases accuracy in first epoch
— Faster convergence

M Stabilizes against hyperparameter variations
— All configurations reach very similar accuracies
— Enables usage of Lysg

Cumulative maximum Cumulative maximum

IF accuracy

GD accuracy

Without shift correction

With shift correction
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Evaluation — Second Stage

Original IF integral RPU Proposed

+1T

Influence of the phase reconstruction method 8]

M Reference algorithms
— Integration of IF considered in
[Engel et al., ICLR2019]
— Recurrent Phase Unwrapping (RPU)
[Masuyama et al., ICASSP2020]

+m/2

Frequency [kHz]

Method | STOI | PESQ_

IF integral 0.8855 2.703
RPU 0.9451 3.438
Proposed 0.9852 4.197

—1/2

Frequency [kHz]

B Audio samples available at: http://iks.rwth-aachen.de/qr/icassp2021-rpr

B Further evaluations available in paper
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Conclusions

M Novelty (1): Regularized cosine loss function
— Prevents arbitrary large/small predictions
— Considers 2m ambiguity
— Reduces risk of diverging gradients and stabilizes training

B Novelty (2): Shift correction
—> Stabilizes training against hyperparameter variations
- Reduces training duration
—> Enables usage of Lysg

B Novelty (3): Phase reconstruction method
- Is simple but very effective
- Outperforms reference algorithms

— LMSEL(AED)
- Lcos(Ad}) +1 [
o Lreg(A¢) +1
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