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Problem Statement And Motivation

◼ Problem: Reconstruct phase from given magnitude spectrum

◼ Many algorithms only process/generate the magnitude spectrum of speech, e.g. in
− Speech enhancement and speech separation
− Speech synthesis and voice conversion
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Introduction

◼ Phase reconstruction approaches
− Consistency-based approaches

▪ Exploit properties of overlapping frames within STFT,
e.g., [Griffin et al., ICASSP1984]

− Model-based approaches
▪ Based on models of the target signal

◼ Deep neural network (DNN)-based approaches, that estimate
− Discretized phase [Takahashi et al., Interspeech2018]
− Continuous phase [Takamichi et al., IWAENC2018]
− Complex-valued spectrum [Oyamada et al., EUSIPCO2018]

◼ Here: Two-stage phase reconstruction system based on [Masuyama et al., ICASSP2020]
1. Estimate phase derivatives using DNNs
2. Reconstruct phase spectrum from its estimated derivatives

Consistency-based

Model-based

DNN-
based
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Two-Stage Phase Reconstruction System

Block diagram of the overall system
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Two-Stage Phase Reconstruction System

Block diagram of the overall system

◼ Proposed improvements:
(1) A novel regularized cosine loss function
(2) Shift correction (SC) as a pre-processing step for the phase derivatives during training
(3) A novel phase reconstruction method
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Two-Stage Phase Reconstruction System

Phase derivatives estimation

◼ For discrete-time signals the phase derivatives can be approximated by:
− Instantaneous frequency (IF):

𝜓if 𝑘,𝑚 ≔ Δt 𝜙 𝑘,𝑚 = 𝜙 𝑘,𝑚 − 𝜙 𝑘,𝑚 − 1

− Group delay (GD):

𝜓gd 𝑘,𝑚 ≔ Δf 𝜙 𝑘,𝑚 = 𝜙 𝑘,𝑚 − 𝜙 𝑘 − 1,𝑚

◼ Two equally structured and simultaneously trained DNNs using combined loss:

ℒtotal = ℒ 𝜓if − 𝜓if + ℒ 𝜓gd − 𝜓gd

◼ Phase and its derivatives are periodic variables and are typically wrapped to [−𝜋, 𝜋)

ℒ should consider this ambiguity of 2𝜋

ℒ should have a limited solution space
𝜙: Phase spectrum
𝑘: Frequency bin
𝑚: Frame index
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Novelty (1): Regularized Cosine Loss Function

Used loss functions ℒ

◼ Regularized cosine function (Novel!):
Loss Ambiguity of 𝟐𝝅 Solution space

ℒMSE  ☺

ℒcos ☺ 

ℒreg ☺ ☺

Here: 𝜆 =
1
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ℒ

ℒMSE: Mean-squared error
ℒcos: Negative cosine func. [Takamichi et al., IWAENC2018]
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Novelty (2): Pre-Processing Via Shift Correction (SC)

Shift correction (SC)

◼ For the IF, a systematic offset can be described by the shift theorem of the discrete Fourier transform (DFT):

𝑥 𝑛 − 𝑆 ↔ 𝑋 𝑘 ⋅ 𝑒𝑗
2𝜋
𝑁 𝑘𝑆

◼ For the GD, a systematic shift of 𝜋 can be observed empirically

◼ Both shifts can be corrected:

Reduced standard deviation and mean close to 0

Number of values near ±𝜋 is reduced

𝑆 = 𝑁

4
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𝑁: DFT size

𝒲: Wrapping operator
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Novelty (3): Phase Reconstruction Method

Phase reconstruction from its estimated derivatives

◼ Combine 𝜓if and 𝜓gd such that a consistent phase spectrum 𝜙 is achieved

◼ Averaging of weighted estimates from 𝑃 paths (Novel!):
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Phase reconstruction from its estimated derivatives

◼ Combine 𝜓if and 𝜓gd such that a consistent phase spectrum 𝜙 is achieved

◼ Averaging of weighted estimates from 𝑃 paths (Novel!):

◼ Quality indicator 𝛼𝑝, e.g., based on magnitude:
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Evaluation

Experimental setup

Category Parameters

Dataset VCTK database [Veaux et al, 2017] preprocessed (e.g. resampled to 16 kHz)
• 18.5 hours training data
• 3.5 hours validation data

STFT • 640 samples Hann window
• 160 samples window shift
• 640 DFT size

DNNs • Normalized log magnitude of current frame and frames at ±2, ±1 as input features
• 3 hidden layers
• 1024 hidden units per hidden layer
• Varying activation function: Sigmoid, tanh, ReLU, LeakyReLU, gated linear, gated tanh
• Varying loss function: ℒMSE, ℒcos, ℒreg

Quality Measures • Accuracy: mean cosine error
• Objective: PESQ and STOI
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Evaluation – First Stage

Influence of the loss function

◼ ℒMSE is inappropriate for phase estimation
◼ ℒcos fails in two cases for GD estimation
◼ ℒreg stabilizes training of GD compared to ℒcos

Influence of the shift correction

◼ Drastically increases accuracy in first epoch
− Faster convergence

◼ Stabilizes against hyperparameter variations
− All configurations reach very similar accuracies
− Enables usage of ℒMSE
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Evaluation – Second Stage

Influence of the phase reconstruction method

◼ Reference algorithms
− Integration of IF considered in

[Engel et al., ICLR2019]
− Recurrent Phase Unwrapping (RPU)

[Masuyama et al., ICASSP2020]

◼ Audio samples available at: http://iks.rwth-aachen.de/qr/icassp2021-rpr

◼ Further evaluations available in paper

Method STOI PESQ

IF integral 0.8855 2.703

RPU 0.9451 3.438

Proposed 0.9852 4.197
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Conclusions

◼ Novelty (1): Regularized cosine loss function
− Prevents arbitrary large/small predictions
− Considers 2𝜋 ambiguity
→ Reduces risk of diverging gradients and stabilizes training

◼ Novelty (2): Shift correction
→ Stabilizes training against hyperparameter variations
→ Reduces training duration
→ Enables usage of ℒMSE

◼ Novelty (3): Phase reconstruction method
− Is simple but very effective
→ Outperforms reference algorithms
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