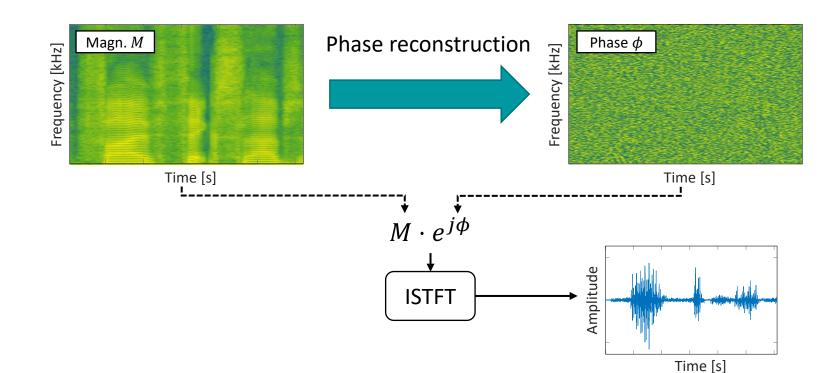


Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks

Lars Thieling, Daniel Wilhelm, Peter Jax

IEEE ICASSP, 2021



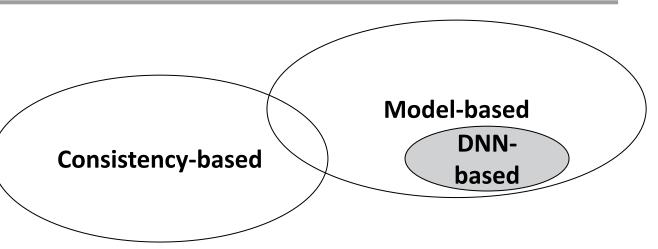
Problem: Reconstruct phase from given magnitude spectrum

- Many algorithms only process/generate the magnitude spectrum of speech, e.g. in
 - Speech enhancement and speech separation
 - Speech synthesis and voice conversion

ISTFT: Inverse short-time Fourier transform

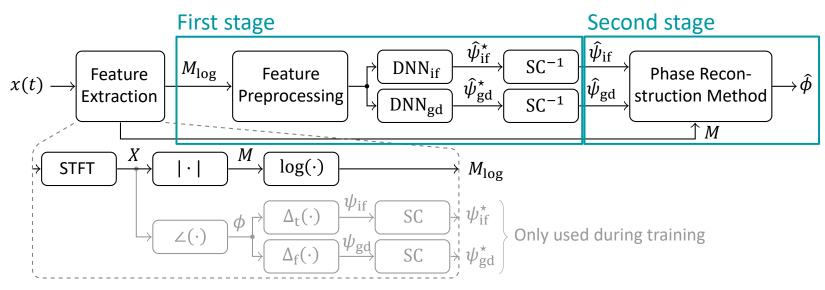
Introduction

- Phase reconstruction approaches
 - Consistency-based approaches
 - Exploit properties of overlapping frames within STFT, e.g., [Griffin et al., ICASSP1984]
 - Model-based approaches
 - Based on models of the target signal



- Deep neural network (DNN)-based approaches, that estimate
 - Discretized phase [Takahashi et al., Interspeech2018]
 - Continuous phase [Takamichi et al., IWAENC2018]
 - Complex-valued spectrum [Oyamada et al., EUSIPCO2018]
- Here: Two-stage phase reconstruction system based on [Masuyama et al., ICASSP2020]
 - 1. Estimate phase derivatives using DNNs
 - 2. Reconstruct phase spectrum from its estimated derivatives

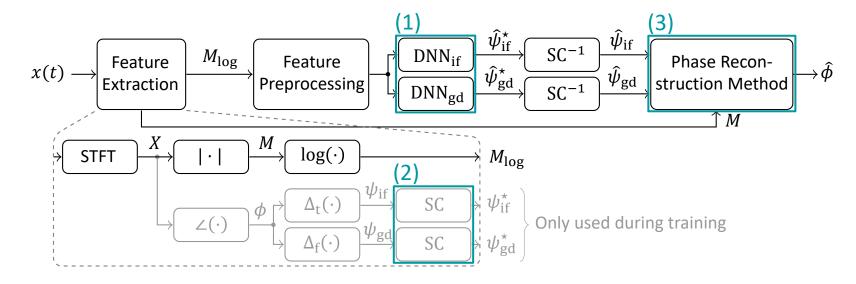
Block diagram of the overall system



 ψ_{if} : Instantaneous frequency (IF) ψ_{gd} : Group delay (GD) M: Magnitude spectrum

Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks Lars Thieling, Daniel Wilhelm, Peter Jax

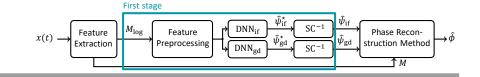
Block diagram of the overall system



Proposed improvements:

- (1) A novel regularized cosine loss function
- (2) Shift correction (SC) as a pre-processing step for the phase derivatives during training
- (3) A novel phase reconstruction method

 ψ_{if} : Instantaneous frequency (IF) ψ_{gd} : Group delay (GD) M: Magnitude spectrum



Phase derivatives estimation

For discrete-time signals the phase derivatives can be approximated by:

Instantaneous frequency (IF):

$$\psi_{\mathrm{if}}(k,m) \coloneqq \Delta_{\mathrm{t}} \phi(k,m) = \phi(k,m) - \phi(k,m-1)$$

- Group delay (GD):

$$\psi_{\mathrm{gd}}(k,m) \coloneqq \Delta_{\mathrm{f}} \phi(k,m) = \phi(k,m) - \phi(k-1,m)$$

Two equally structured and simultaneously trained DNNs using combined loss:

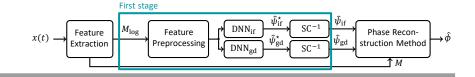
$$\mathcal{L}_{\text{total}} = \mathcal{L}(\psi_{\text{if}} - \hat{\psi}_{\text{if}}) + \mathcal{L}(\psi_{\text{gd}} - \hat{\psi}_{\text{gd}})$$

Phase and its derivatives are periodic variables and are typically wrapped to $[-\pi, \pi)$

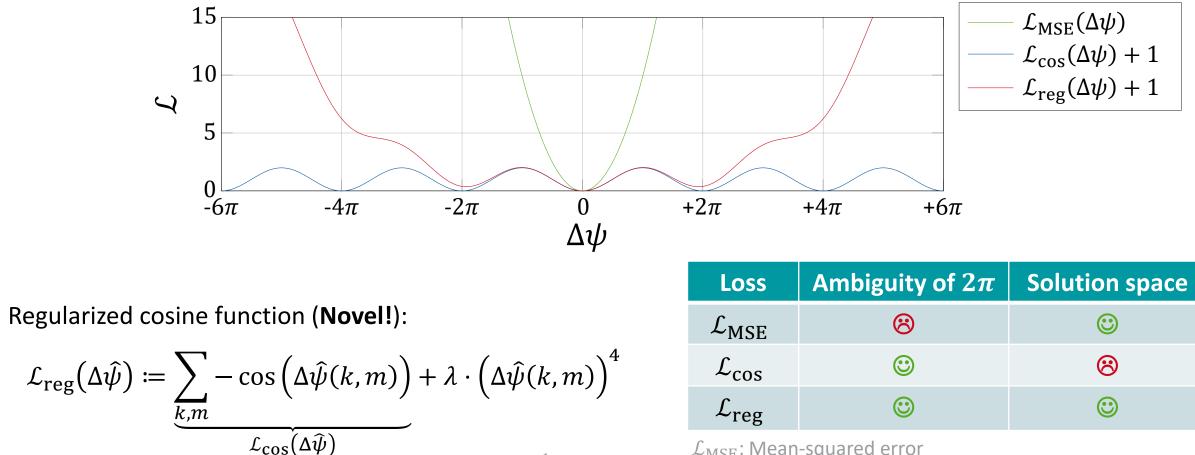
 ${\cal L}$ should consider this ambiguity of 2π

φ: Phase spectrumk: Frequency binm: Frame index

Novelty (1): Regularized Cosine Loss Function



Used loss functions \mathcal{L}



 \mathcal{L}_{MSE} : Mean-squared error

 \mathcal{L}_{cos} : Negative cosine func. [Takamichi et al., IWAENC2018]

Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks Lars Thieling, Daniel Wilhelm, Peter Jax

Here: $\lambda = -\frac{1}{2}$

Novelty (2): Pre-Processing Via Shift Correction (SC)

$$x(n-S) \leftrightarrow X(k) \cdot e^{j\frac{2\pi}{N}kS}$$

 $S = \frac{N}{4}$: Window shift N: DFT size

For the GD, a systematic shift of π can be observed empirically

Both shifts can be corrected:

Shift correction (SC)

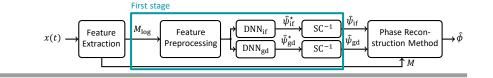
8

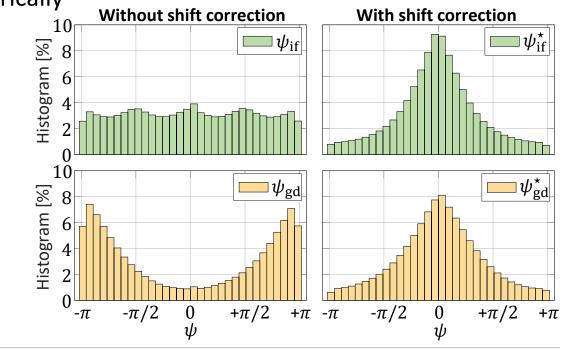
$$\psi_{\rm if}^{\star}(k,m) = \mathcal{W}\left(\psi_{\rm if}(k,m) - \frac{\pi}{2}k\right)$$
$$\psi_{\rm gd}^{\star}(k,m) = \mathcal{W}\left(\psi_{\rm gd}(k,m) + \pi\right)$$

Reduced standard deviation and mean close to 0

Number of values near $\pm \pi$ is reduced

 \mathcal{W} : Wrapping operator





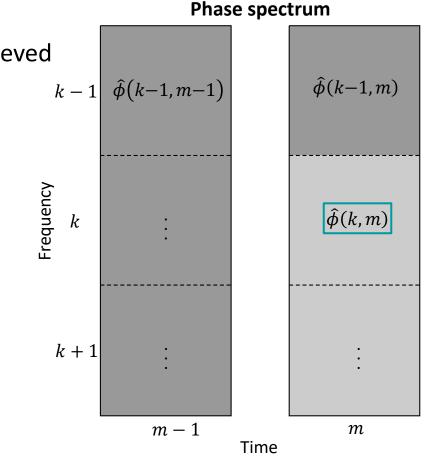
 $x(t) \rightarrow \overbrace{\text{Extraction}}^{\text{Feature}} \overbrace{\text{Preprocessing}}^{\text{Feature}} \overbrace{\text{DNN}_{\text{gd}}}^{\hat{\psi}_{\text{if}}^{*}} \overbrace{\text{SC}^{-1}}^{\text{SC}^{-1}} \overbrace{\psi_{\text{gd}}}^{\hat{\psi}_{\text{gd}}} \overbrace{\text{Struction Method}}^{\text{Second stage}} \widehat{\phi}_{\text{gd}}$

Phase reconstruction from its estimated derivatives

Combine $\hat{\psi}_{if}$ and $\hat{\psi}_{gd}$ such that a consistent phase spectrum $\hat{\phi}$ is achieved

Averaging of weighted estimates from *P* paths (**Novel!**):

$$\widehat{\phi}(k,m) = \angle \sum_{p=1}^{P} \alpha_p(k,m) \cdot e^{j \cdot \varphi_p(k,m)}$$



 φ_p : Estimation of the p^{th} path

 $x(t) \rightarrow \overbrace{\text{Extraction}}^{\text{Feature}} \xrightarrow{M_{\text{log}}} \overbrace{\text{Preprocessing}}^{\text{Feature}} \xrightarrow{\text{DNN}_{\text{if}}} \xrightarrow{\hat{\psi}_{\text{if}}^{*}} \xrightarrow{\text{SC}^{-1}} \xrightarrow{\hat{\psi}_{\text{if}}} \xrightarrow{\hat{\psi}_{\text{if}}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{SC}^{-1}} \xrightarrow{\hat{\psi}_{\text{if}}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{SC}^{-1}} \xrightarrow{\hat{\psi}_{\text{if}}} \xrightarrow{\hat{\psi}_{\text{if}}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{SC}^{-1}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{SC}^{-1}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\text{Phase Reconstruction Method}} \xrightarrow{\hat{\psi}_{\text{gd}}^{*}} \xrightarrow{\hat{\psi}_{\text{gd}}$

Second stage

Phase reconstruction from its estimated derivatives

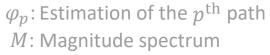
Combine $\hat{\psi}_{if}$ and $\hat{\psi}_{gd}$ such that a consistent phase spectrum $\hat{\phi}$ is achieved

• Averaging of weighted estimates from *P* paths (**Novel!**):

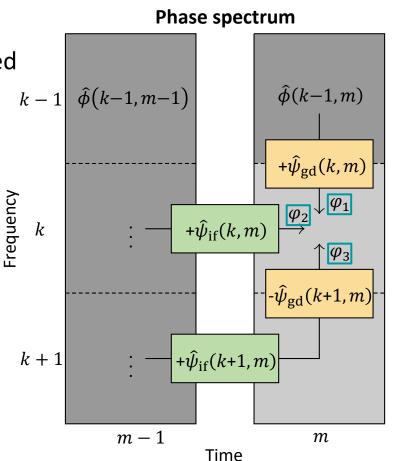
$$\hat{\phi}(k,m) = \angle \sum_{p=1}^{P} \alpha_p(k,m) \cdot e^{j \cdot \varphi_p(k,m)}$$

Quality indicator α_p , e.g., based on magnitude:

$$\begin{aligned} &\alpha_1(k,m) = M(k-1,m) \\ &\alpha_2(k,m) = M(k,m-1) \\ &\alpha_3(k,m) = \min_{l=\{-1,0\}} M(k+1,m+l) \end{aligned}$$



Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks Lars Thieling, Daniel Wilhelm, Peter Jax



11

Experimental setup

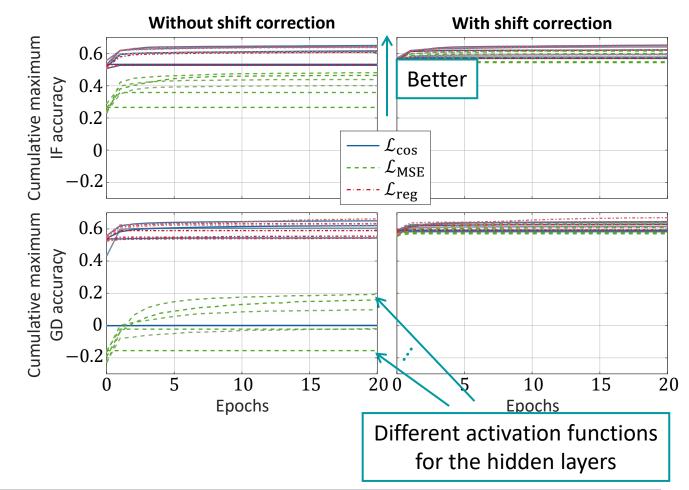
Category	Parameters
Dataset	 VCTK database [Veaux et al, 2017] preprocessed (e.g. resampled to 16 kHz) 18.5 hours training data 3.5 hours validation data
STFT	 640 samples Hann window 160 samples window shift 640 DFT size
DNNs	 Normalized log magnitude of current frame and frames at ±2, ±1 as input features 3 hidden layers 1024 hidden units per hidden layer Varying activation function: Sigmoid, tanh, ReLU, LeakyReLU, gated linear, gated tanh Varying loss function: L_{MSE}, L_{cos}, L_{reg}
Quality Measures	Accuracy: mean cosine errorObjective: PESQ and STOI

Influence of the loss function

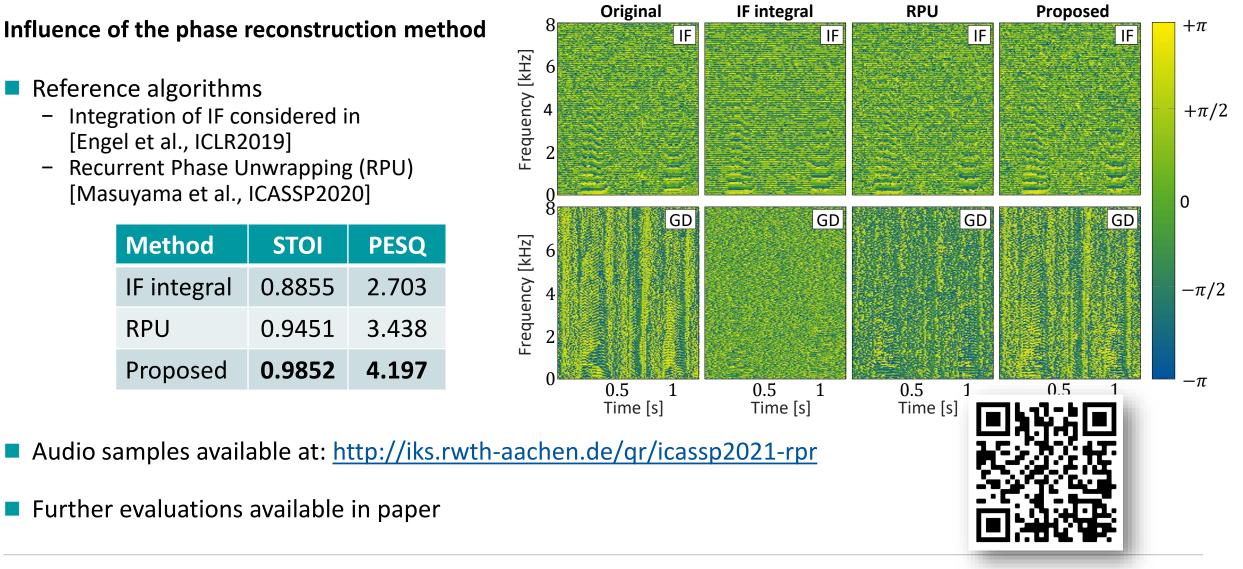
- \mathcal{L}_{MSE} is inappropriate for phase estimation
- \mathcal{L}_{cos} fails in two cases for GD estimation
- \mathcal{L}_{reg} stabilizes training of GD compared to \mathcal{L}_{cos}

Influence of the shift correction

- Drastically increases accuracy in first epoch
 - Faster convergence
- Stabilizes against hyperparameter variations
 - All configurations reach very similar accuracies
 - Enables usage of \mathcal{L}_{MSE}



Evaluation – Second Stage



Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks Lars Thieling, Daniel Wilhelm, Peter Jax

Conclusions

- Novelty (1): Regularized cosine loss function
 - Prevents arbitrary large/small predictions
 - Considers 2π ambiguity
 - ightarrow Reduces risk of diverging gradients and stabilizes training
- Novelty (2): Shift correction
 - \rightarrow Stabilizes training against hyperparameter variations
 - \rightarrow Reduces training duration
 - → Enables usage of \mathcal{L}_{MSE}
- Novelty (3): Phase reconstruction method
 - Is simple but very effective
 - \rightarrow Outperforms reference algorithms

