MULTI-DECODER DPRNN: SOURCE SEPARATION FOR VARIABLE NUMBER OF SPEAKERS

Junzhe Zhu, Raymond A. Yeh, Mark Hasegawa-Johnson

Separation with variable number of speakers

- Source separation: Given an audio mixture $X = \sum S_1, S_2, S_3, \ldots$, find S_1, S_2, S_3
- Dataset: a possible range of number of speakers (we set it to 2-5)
- Challenge: How do we use a single neural network to output a variablesized tensor containing the estimated source signals?

Challenges of Existing methods

- OR-PIT: Separate one source at a time, combine with permeationinvariant training(PIT)
- Nachmani et al proposed to train a model for each dataset with a fixed number of speakers.
- Luo et al. proposed to use a model with a high number of output channels, and discard extra channels
- The first two methods perform better, but runtime scale up with the number of sources. The third method has low SNR when number of sources goes up

Problem formulation

- We divide the problem into two parts 1. Source counting(determining) number of speakers) 2. Given the source count, estimate the source signals)
- We assume that if we use a sequence neural network(e.g. LSTM) to process a mixture signal, the output distribution will change depending on the number of ground-truth sources.
- Question: how do we make a single neural network adapt to a variable number of sources

Backbone Architecture: TasNet

Our solution

 Use the same encoder & backbone network, but a different decoder for each number of sources!

- We always use the same encoder & backbone, shared by all decoders
- Each decoder takes the same input, but has a different number of output channels (achieved by a different projection layer)
- During training, we select the decoder based on the ground-truth
- We also train a classifier that selects which decoder to use during inference

Implementation

- The number of output channels(sources) scales up with output size of projection layer
- The count-head(which selects decoder) is trained, but not used during training

rith output size of projection layer It not used during training

Training

- Two components: decoder(signal loss) and count-head(classification loss)
- Training steps:
 - 1. Input mixture signal M

 - 2. Run encoder & LSTM backbone, compute intermediate output Z 3. Run count-head with Z as input, compute probability P 4. Run a decoder(selected based on ground truth) with Z as input, compute
 - estimated sources S
 - 5. Loss is weighted sum of cross entropy loss for P and reconstruction loss for S

$$\mathcal{L}_{\text{count}(\mathbf{x},\mathcal{Y})} = -\sum_{k}^{K} \mathbf{1}_{|\mathcal{Y}|=k} \cdot \log \hat{p}(|\mathcal{Y}|=k | \mathbf{x}), \quad \mathcal{L}_{\text{decoders}}(\mathbf{x},\mathcal{Y}) = \sum_{k} \mathbf{1}_{|\mathcal{Y}|=k} \cdot \operatorname{uPIT}(\mathcal{Y}, \hat{\mathcal{Y}}_{k}),$$
Final Loss:
$$\min_{\theta} \sum_{(\mathbf{x},\mathcal{Y})\in\mathcal{D}} \alpha \cdot \mathcal{L}_{\text{count}}(\mathbf{x},\mathcal{Y}) + (1-\alpha) \cdot \mathcal{L}_{\text{decoders}}(\mathbf{x},\mathcal{Y}).$$

Inference

- Two components: decoder(signal loss) and count-head(classification loss)
- Inference steps:
 - 1. Input mixture signal M
 - 2. Run encoder & LSTM backbone, compute intermediate output Z
 - 3. Run count-head with Z as input, compute probability P
 - 4. Run the decoder selected based on P to get estimated signals $S = \{S1, S2, ...\}$

Performance Metric

- We define penalized-SNR, which has two components: 1. Si-SNR for the matched part between ground truth(GT) and estimated sources
 - 2. Penalty term = {Constant P_ref} x {number of mismatched channels}
- We choose P_ref to either be -30 or the average SNR the system would achieve when provided with oracle number of speakers

d),

$(\mathbf{y}^{\pi(n)}, \hat{\mathbf{y}}^n)$ Signal-to-noise ratio

alty term)

accuracy(98.5%)

Result: Source counting accuracy & oracle SNR

Model	2	3	4	5	-	Model	2	3	4	5
Model-Select(DPRNN)[9]*	81.3	64.4	46.2	85.6	-	Conv-Tasnet[6]*	15.3	12.7	-	-
Model-Select(Mulcat)[9]*	84.6	69.0	47.5	92.3		DPRNN[7]*	18.8	-	-	-
Attractor Network[12]	95.7	97.6	-	-		DPRNN[9]*	18.21	14.71	10.37	8.65
OR-PIT[10]	95.7		-	-		Mulcat[9]*	20.12	16.85	12.88	10.56
Ours	99.9	99.2	97.6	97.3	=	Attractor Network[12]	15.3	14.5	-	-
			- 1			OR-PIT[10]	14.8	12.6	10.2	-
Table I. Performance of source counting; Each column is						Ours	19.1	14.1	9.3	5.9

recall for corresponding number of speakers. For OR-PIT, only overall accuracy is provided.

2.4. Inference

 Table 2. Oracle SNR; Each column shows results averaged
 from all mixtures with corresponding number of speakers. *models above double-line are models with fixed number of speakers.

- Demo can be found at <u>https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/</u>
- Open-sourced implementation and pre-trained lightweight model can be found in asteroid toolkit
- Full model can be found at <u>https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN</u>

Result: P-Si-SNR

- Model-Select indicates the method where a different model is trained for each number of speakers
- As can be seen, our method performs similarly well, but requires much less training resources, and is faster during inference.

$\mathcal{P}_{\rm ref} = -30 dB$	2	3	4	5	 $\mathcal{P}_{ref} = -SI-SNR_{oracle}$	2	3	4	5
Model-Select(DPRNN)[10]*	15.2	10.7	6.0	7.7	 Model-Select(DPRNN)[10]*	15.9	12.1	8.1	8.2
Model-Select(Mulcat)[10]*	17.5	13.21	8.4	10.0	Model-Select(Mulcat)[10]*	18.1	14.2	10.2	10.3
Attractor Network[14]	14.7	14.2	-	-	 Attractor Network[14]	14.9	14.3	-	-
OR-PIT[11]	13.1		-	-	OR-PIT[11]	13.4		-	-
Ours	19.1	14.0	9.2	5.8	Ours	19.1	14.0	9.3	5.9

Table 4. P-SI-SNR of each model; For OR-PIT, result is computed by averaging the P-SI-SNR for both 2 and 3 speakers computed with 95.7% recall. Note that models with lower max speaker count generally have higher accuracy, since fewer classes implies a higher P-SI-SNR. * denotes models trained on fixed number of speakers.

rent model is trained for each vell, but requires much less

Summary

- A method for source separation w/ unknown number of sources
- 2 Problems:
 - 1. how many sources? Solution: Use shared backbone & classifier(counthead)
 - 2. How to recover signal? Solution Use multiple decoder heads
- Result: High classification accuracy, no increase in complexity