LINOS

MOTIVATION

Task: Source separation for variable number of speakers. Given audio mixture $M = \sum S_1, S_2, S_3, \dots$ we want to find the sources S_n , without prior knowledge of how many sources there are

INTRODUCTION

Due to the recent progress in deep learning, supervised methods have received a lot of interest. For example, Luo et al. presented a dual-path RNN architecture to better capture both short and long-term features. However, these works have focused on the setting where the number of speakers is a priori known.

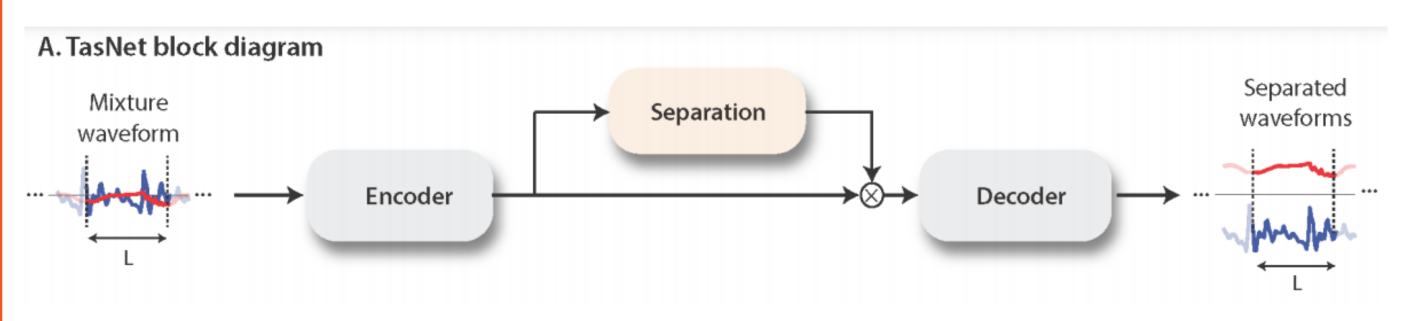


Figure 1: Block diagram of DPRNN. The decoder part includes a projection layer whose output size is the product of hidden size and number of output sources

EVALUATION METRIC

To deal with the situation when estimation and target have different number of sources, we add a penalty term to the error metric based on number of mismatching sources.

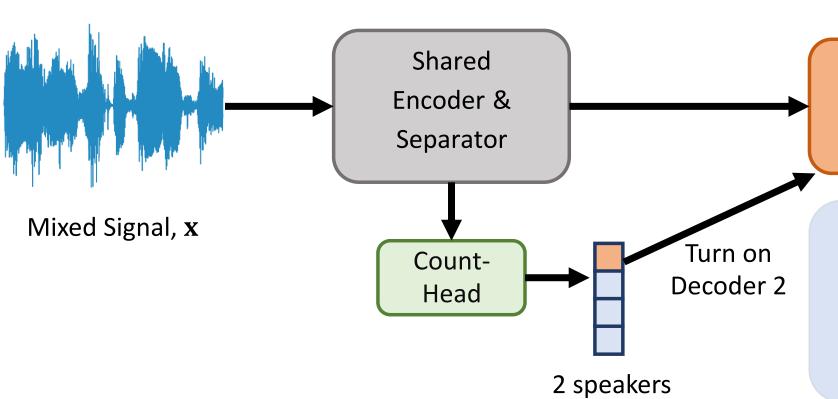
$$\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},\mathcal{Y})\in\mathcal{D}} \frac{1}{\max(|\mathcal{Y}|,|\hat{\mathcal{Y}}|)} (\mathcal{L}_{\text{match}} + \mathcal{L}_{\text{pa}})$$

where \mathcal{L}_{match} is the Si-SNR between matched sources, $\mathcal{L}_{pad} = \mathcal{P}_{ref} \cdot ||\mathcal{Y}| - |\hat{\mathcal{Y}}||$ is the penalty term for mismatching sources, and we set \mathcal{P}_{ref} to either be -30 or average Oracle SNR of the measured system.

MULTI-DECODER DPRNN: SOURCE SEPARATION FOR VARIABLE NUMBER OF SPEAKERS Raymond A. Yeh Mark Hasegawa-Johnson Junzhe Zhu University of Illinois at Urbana-Champaign

OUR APPROACH

We use the same encoder and separation(LSTM) network, but a list of decoders instead of just one. Each decoder corresponds to a different number of sources. For example, a decoder for 2 sources, another for 3 sources, and so on.

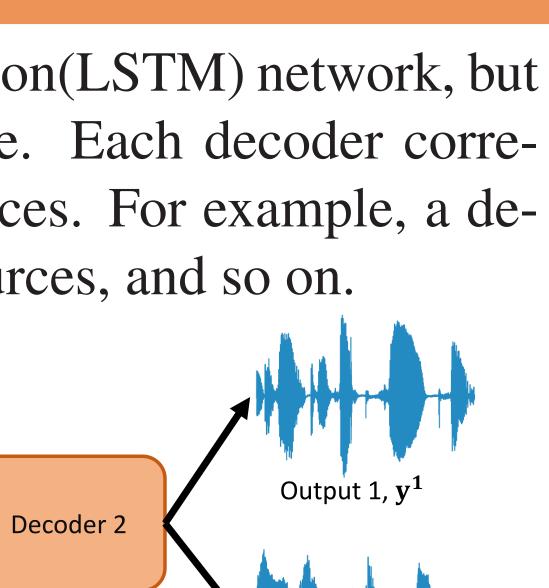


Each decoder takes the same input, but has a different number of output channels (achieved by a different projection layer) We also train a classifier(count-head) that selects which decoder to use. During training, we select the decoder based on the ground-truth. During test-time, we select the decoder based on the classifier output.

```
Training steps:
M \leftarrow \text{Mixture Signal}
S \leftarrow \text{Ground Truth Sources}\{S_1, S_2, S_3, ...\}
\alpha \leftarrow \text{Balancing Factor}
Z \leftarrow \text{Separator}(\text{Encoder}(M))
P \leftarrow \text{Count Head}(Z)
S \leftarrow \text{Decoders}\_\text{List}[|S|](Z)
Loss = (1 - \alpha) \times \text{Si-SNR}(S, \hat{S}) + \alpha \times \text{Cross-Entropy}(P, |S|)
Inference steps:
M \leftarrow \text{Mixture Signal}
Z \leftarrow \text{Separator}(\text{Encoder}(M))
P \leftarrow \text{Count\_Head}(Z)
```

 $S \leftarrow \text{Decoders}_\text{List}[\operatorname{argmax}(P)](Z)$

io/Multi-Decoder-DPRNN/



- Aller Decoder 3 Output 2, y

Project page: https://junzhejosephzhu.github.

RESULTS

True Pred	2	3	4	5
2	2998	17	1	0
3	2	2977	27	0
4	0	6	2928	80
5	0	0	44	2920

Model

Conv-Tasnet* DPRNN* DPRNN* Mulcat*

Attractor Network **OR-PIT** Ours

 $\mathcal{P}_{\rm ref} = -30 dB$ Model-Select(DPRNN Model-Select(Mulcat Attractor Network **OR-PIT** Ours

Table 3: P-SI-SNR of each model; For OR-PIT, result is

 computed by averaging the P-SI-SNR for both 2 and 3 speakers computed with 95.7% recall. Note that models with lower max speaker count generally have higher accuracy, since fewer classes implies a higher P-SI-SNR. * denotes models trained on fixed number of speakers.

Table 1: Speaker counting confusion matrix for the
 proposed count-head method

2	3	4	5			
15.3	12.7	_	_			
18.8	_	-	-			
18.21	14.71	10.37	8.65			
20.12	16.85	12.88	10.56			
15.3	14.5	_	-			
14.8	12.6	10.2	-			
19.1	14.1	9.3	5.9			

Table 2: Oracle SNR; Each column shows results averaged
 from all mixtures with corresponding number of speakers. *models above double-line are models with fixed number of speakers.

•				
	2	3	4	5
N)*	15.2	10.7	6.0	7.7
t)*	17.5	13.21	8.4	10.0
	14.7	14.2	_	_
	13.1		-	-
	19.1	14.0	9.2	5.8