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Abstract

We summarise previous work showing that the basic sigmoid activation function arises as an

instance of Bayes’s theorem, and that recurrence follows from the prior. We derive a layer-wise

recurrence without the assumptions of previous work, and show that it leads to a standard re-

currence with modest modifications to reflect use of log-probabilities. The resulting architecture

closely resembles the Li-GRU which is the current state of the art for ASR. Although the con-

tribution is mainly theoretical, we show that it is able to outperform the state of the art on the

TIMIT and AMI datasets.

Context and motivation

In signal processing, modelling of context can be achieved via recurrence. The most successful

architectures are based on the long short-term memory (LSTM), which uses a memory cell and

different gates to filter out irrelevant information. Recent efforts have been pursued to reduce

the size of recurrent units and avoid redundancies. This notably lead to the gated recurrent unit

(GRU) [1] in 2014 and light GRU [3] in 2018. Following the recent work of Garner and Tong [2],

our motivation is to provide a probabilistic interpretation of recurrent units and shed some light

on the seemingly ad-hoc concepts of gates and memory cells.

Bayesian interpretation of recurrence

Consider an input sequence XT = [x1, . . . , xT ] ∈ RF×T of length T , where each observation
xt is a vector of size F . We assume that there are H hidden features {φi |i = 1, . . . , H} that we
wish to detect along the sequence. At each timestep t, a feature has two possible states: present
or absent, that we write as φt,i and ¬φt,i respectively. We want to build a layer of H recurrent

units that will output the stacked probabilities ht := P (φt|Xt) ∈ [0, 1]H of the different features
being present at each timestep t = 1, . . . , T .

Figure 1. Diagram of the approach

Bayes’s theorem

For the two-class case, Bayes’s formula can be rewritten in a sigmoid form for the whole layer,

ht = σ
[

log(rt) + logit(pt)
]

. (1)

The posterior ht, representing the desired unit outputs, is expressed as a function of the ratio of

likelihood rt and prior pt, defined as

rt := p(xt|φt)
p(xt|¬φt)

and pt := P (φt|Xt−1) . (2)

Ratio of likelihood and Prior

If we assume that the likelihood of observing xt given the current state of the features φt can be

represented with multivariate normal distributions, the ratio of likelihood can be expressed as

rt = exp
[
W T

r xt + br

]
. (3)

Assuming that the H feature probabilities ht−1,i of the layer are independently beta distributed,

they can be combined into a single prior probability,

pt = σ
[
V p log(ht−1) + bp

]
. (4)

Resulting forward pass

By plugging equations (3) and (4) into (1), we get the following update equation,

ht = σ
[
W hxt + V h log(ht−1) + bh

]
, (5)

or in log-probabilities form, i.e. ht := log
[
P (φt|Xt)

]
,

ht = softplus
[
W h xt + V h ht−1 + bh

]
, (6)

where W h, V h and bh are representative of the distributions of xt and ht−1 when the features
are present or absent, and can be treated as trainable parameters of the model.

Adding a context relevance gate

We define a binary state variable ρt,i, which indicates if xt is relevant for the occurrence of φt,i.

The associated probabilities zt,i = P (ρt,i|Xt) can be computed with equation (5). The desired
output probabilities ht,i can then be expressed by marginalizing over ρt,i so that we get the

forward pass of a Li-GRU with minor modifications,

zt = σ
[
W z xt + V z log(ht−1) + bz

]
(7a)

h̃t = σ
[
W h xt + V h log(ht−1) + bh

]
(7b)

ht = zt ∗ h̃t + (1 − zt) ∗ ht−1 . (7c)

Additionally, the input of the i-th layer corresponds to the log-probabilities of the previous layer

x
[i]
t = log

(
h

[i−1]
t

)
.

Figure 2. Diagram of the Li-BRU defined by equations (7)

Comparison with Li-GRU

The forward pass of a Li-GRU is the following,

zt = σ
[
W z xt + V z ht−1 + bz

]
(8a)

h̃t = ReLU
[
W h xt + V h ht−1 + bh

]
(8b)

ht = zt ∗ h̃t + (1 − zt) ∗ ht−1 . (8c)

The differences with our unit are

the ReLU activation, which is an approximation of the softplus

the gate applied to log-probabilities.
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Experiments

We perform a self-consistent comparison between recurrent units on 2 speech recognition tasks,

using the TIMIT and AMI corpora. Following the pytorch-kaldi implementation of [3], all pre-

sented experiments use a recurrent architecture with 4 layers of H=550 bidirectional units. The

F=50 fMLLR input features are extracted via the Kaldi recipe.

Without the update gate

We first test the simple BRU from equation (6) on TIMIT and compare it to conventional units

of the same size. Units that have a feedback on log-probabilities perform significantly better.

Figure 3. Error-rates on TIMIT testset for various RNN architectures.

With the update gate

We now test the complete Li-BRU from equations (7) to state of the art recurrent units.

Figure 4. Error-rates on TIMIT (top) and AMI (bottom) for various RNN architectures.

The Li-BRU outperforms all other state of the art recurrent architectures on both TIMIT and

AMI datasets with error-rates of 14.4 %, and 26.4% respectively. We found that applying the

gate to probabilities or log-probabilities is practically equivalent. The root of improvement of the

Li-BRU over the Li-GRU therefore seems to lie in the use of the softplus function instead of its

approximation by the ReLU.

Conclusion

In previous work, it was shown that a Bayesian analysis of a sigmoid activation function led natu-

rally to a unit-wise recurrence and, with approximations, to a layer-wise recurrence. In this paper,

in a mainly theoretical contribution, we have shown that beta-distributed sigmoid outputs feed-

ing into another sigmoid unit constitute a layer-wise recurrencewithout approximations. Without

a forget gate, this reduces to a standard fully-connected recurrence, but with a softplus activa-

tion. Given that the update gate of a GRU can also be derived probabilistically, the approach

led naturally to comparison with a Li-GRU. In an experimental evaluation, we confirmed that the

resulting light Bayesian recurrent unit (Li-BRU) can modestly but significantly outperform the

state of the art on two ASR tasks (TIMIT and AMI datasets), demonstrating the importance of

the probabilistic derivation. More generally, the new techniques contribute to a growing toolkit

of Bayesian approaches for neural architectures.
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