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Objectives

•Characterizing the entire sound field of a room utilizing a sparse dataset of
Room Impulse Responses (RIRs) measured at different locations.
•Accurate spatial interpolation of perceptually relevant low frequency modes
in rooms with simple geometries having non-rigid walls.
•Useful for real-time interpolation and extrapolation in Augmented Reality
(AR) applications.

Room Modes

• Solutions to the 3D wave equation are standing waves, or room modes.
•The RIR can be characterized by a sum over M modes, whose complex
amplitudes, γ, are functions of space, whereas frequencies and dampings,
ω and α, determine the temporal response:

h(x, y, z, t) =
∑M

m=1γm(x, y, z) exp [(jωm − αm)t].
•Complex mode amplitudes are the solution to the homogeneous Helmholtz
equation [1]:

γm(µ) = Cµm exp(jkµmµ) +Dµm exp(−jkµmµ);
kµm →Wave number; Cµm, Dµm → Constants; µ ∈ (x, y, z).

•We want to estimate the unknown wave numbers and constants for each
mode from a set of RIR measurements at different locations in the room.

Mode Estimation

•RIRs measured at different positions are time-aligned and averaged.
•Common poles (mode frequencies and amplitudes) calculated from the
averaged RIR with subband ESPRIT [2].
•Mode amplitudes estimated with linear least squares.

Non-linear Optimization

•For 2D interpolation with measurements at L locations,
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uml
= [e−j(kxmxl+kymyl) ej(kxmxl+kymyl)

e−j(kxmxl−kymyl) ej(kxmxl−kymyl)]
γ̂m = Um(kxm, kym)cm.

•Find optimal parameters for the first Mc modes with sequential
optimization [3].

Algorithm 1 Sequential optimization
Require: 0 ≤ kxm, kym ≤ ωm+jαm

c ∀ m
for m = 1 · · ·Mc do
Initialize kxm = kym = ωm+jαm√

2c
repeat
cmi

= U ∗†mi−1
γm

γ̂mi
= U ∗mi−1

cmi

J(kxmi, kymi) = ||20 log10(γm � γ̂mi
)||22

k∗xmi
, k∗ymi

= arg minkxm,kym J
until convergence

end for

FDTD Simulations

Shoebox room with different materials

• Shoebox room of dimensions 3 ×
2×3 m3 with different admittances
(Kd) on the walls - front and back
wall Kd = 0.9, left and right wall
Kd = 0.8, floor and ceiling Kd =
0.99.

Room with tilted walls.

•Non-rectangular room with no
parallel walls, 3 m on the longest
edge in each direction, made of the
same materials and having tilted
walls at an angle of 9.4◦ in the x, z
directions.

•Omni-directional point source and virtual microphones placed in a
rectangular grid on the xy plane at a height of 1.7 m.
•Microphone grid resolution is d = 0.2 m. Maximum mode frequency
corresponding to Mc is c

2d = 866 Hz.

Results

Mode at 58 Hz and 62 Hz, measured. Mode at 58 Hz and 62 Hz, fit.

•Number of microphones varied from 5 to 50. 100 trials ran for each set,
microphones placed in different randomized configurations in each trial.
•MSSIM - Mean structural similarity between measured and fit mode shapes.
•AMSDE - Absolute mean spectral difference error. Absolute difference
between the frequency responses (averaged over all measurement points
and all configurations) of the measured and modeled RIR, expressed in dB.
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