AUDITORY FILTERBANKS BENEFIT UNIVERSAL SOUND SOURCE SEPARATION
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GTFEB e separation results  One classic segregation experiment revealing the proximity ;
GTFB i1s based on the Gammatone function, whose Filterbanks SI-SDRi (dB) princi nle in frequency and time is chosen to test the model’s %T T ey e
parameters are jointly learned with the network. STFT 9.21 behavior, as shown in the right figure. T_
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(a) freel efril;te(;rbank (b) parameterized GTFB (c) fixed GTFB (@) tree filterbank (b) parameterized GTFB () fixed GTFB
Fig. 1. Frequency response of different filterbanks. The red dashed line indicates the mapping from linear frequency Fig. 2. SI-SDR improvement (dB) for tone sequences separation with different filterbanks as a function of AF and TRT.
to ERB scale. » When AF is large, and TRT is short (top left corner), tone sequences A and B are more likely to be
separated. It Is consistent with the temporal coherence boundary presented by van Noorden (the white

* The free learned filters are bandpass filters that are distributed on a nonlinear scale like in the auditory

system.
» Auditory-like filterbanks are suitable for the source separation system !

dashed line).
 No matter which filterbank is used, the network learned the general Gestalt principle (proximity
In frequency and time) automatically from nature sound sources !



