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ABSTRACT & MAIN CONTRIBUTIONS
Though the blind super-resolution problem is nonconvex in nature, recent advance shows the feasibil-
ity of a convex formulation which gives the unique recovery guarantee. However, the convexification
procedure is coupled with a huge computational cost and is therefore of great interests to investigate
fast algorithms. The main contributions of this work are in the following two aspects:

• A highly efficient solver is proposed by employing a novel preconditioning scheme and a column-
wise update strategy. To our best knowledge, it is the first fast ADMM for the blind super-
resolution problem.

• Simulations confirm the high efficiency and robustness of the proposed solver. Particularly, it is
shown to be around 100 times faster than CVX.

EFFICIENCY & ROBUSTNESS

Algorithm 1 ADMM-based Solver

Input: measurements y, dictionary B
1: Initialize: Λ0 ← 0, Z0 ← 0
2: while the stopping criteria not met do
3: for j = 1, · · · , N do
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8: end while
Stopping criteria:
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CONDITIONING & STOPPING CRITERIA

Theorem 1 (PSD cone conditioning) For any posi-
tive real α ∈ R++, the optimal points of the following
program is invariant to the choice of α

minimize f1(A) + f2(B) + f3(C)

subject to
[

1
αA B
BH αC

]
� 0,

where the objective functions are closed, proper and con-
vex.

Proposition 1 (duality gap characterization) The
primal and dual solution pair (X,u,W ,Λ) are opti-
mal if and only if the following equation holds〈[
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where IN , IK denotes the identity matrix of dimension
N ×N and K ×K, respectively.

CONCLUSION
In this work, we have proposed an ADMM-based
convex solver for the blind suer-resolution prob-
lem. Its high efficiency and robustness are sup-
ported by the simulation results. Several new cri-
teria and formulations are proposed.

FUTURE RESEARCH
The proposed preconditioning scheme is ex-
pected to have a much broader impact. We are
currently working on the theoretical charactriza-
tion of the proposed conditioning scheme includ-
ing the optimal scaling factor and the correspond-
ing improved rate.

OBSERVATION MODEL
Consider a set of point sources represented by a
superposition of spikes ξ(t) =

∑J
j cj=1δτj (t), The

observation is a convolution between ξ(t) and the
Point Spread Function (PSF), as
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After sampling and transferring to the Fourier do-
main, we obtain the measurements as
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∑
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To alleviate the underdeterminess of the above
system, fixed supspace assumption is applied.
That is, we assume the set of PSFs {gj}Jj=1 lives
in a fixed subspace spanned by the columns of a
known matrix B :=
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To achieve the unique recovery, first define
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measurements can then be equivalently cast into
a lifted form
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FORMULATIONS
To search for a unique structured matrix, we
adopt the so-called Atomic norm as the regular-
izer
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The blind super-resolution problem under noise
can then be solved by

minimize
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where u1 ∈ R is the first entry of u. By the
proposed conditioing scheme and applying the
ADMM framework, we arrive at the following fi-
nal formulation:
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