

Yusuke ARAI¹, Shogo MURAMATSU², Hiroyasu YASUDA³, Kiyoshi HAYASAKA⁴ and Yu OTAKE⁵ ¹Graduate School of Sci. & Tech., Niigata Univ., Japan, ²Faculty of Eng., Niigata Univ., Japan, ³Research Inst. for Natural 9th June, 2021 Hazard & Disaster Recovery, Niigata Univ., Japan, ⁴Faculty of Sci., Niigata Univ., Japan, ⁵School of Eng., Tohoku Univ., Japan **IEEE ICASSP 2021, Toronto**

ABSTRACT

Propose combing extended dynamic mode decomposition (EDMD) and graph filter banks (GFBs).

- **EDMD** is a data driven modeling method for nonlinear dynamic systems.
- We introduce DMD on graph to predict multi-point river water levels.
- **GFBs** work in combination with a sparse approximation algorithm.
- Graph is used to construct GFBs for analyzing and synthesizing water levels.
- We conduct river water level prediction for real web-scraped data.
- Performance evaluation shows the superiority to the normal DMD approach.

Index Terns – *Extended dynamic mode* decomposition, graph signal processing, sparse coding, river disaster prevention

. INTRODUCTION

Problem

- EDMD takes no account of graph structure.
- GFB reflects no temporal variation for time series data.

Purpose

To predict temporal variation of graph signal w/ graph structure and dynamics.

Figure 1: Part of Shinano River system, Japan (left), and its flooding in Ojiya on Oct. 13, 2020 (right)

Sparse-Coded Dynamic Mode Decomposition on Graph for Prediction of River Water Level Distribution

Step 1:	Prepare a training set. $\{\mathbf{x}_k\}_{k=0}^{N-1}$ of graph signals
Step 2:	Map $\{\mathbf{x}_k\}_{k=0}^{N-1}$ with $\Psi(\cdot)$ to $\{\mathbf{y}_k\}_{k=0}^{N-1}$.
Step 3:	Find the transfer matrix K in $\widetilde{\mathcal{F}}$.
Step 4:	Find the dynamic modes Φ and eigenvalues Λ
Step 5:	Predict by the time evolution equation.

IV-I. Analysis Result

monitoring stations in Shinano River system

modes in Φ (b)-(e), $\alpha = 0.2$ and step size $\gamma = 1.2$. (Fig. 3 in the paper was wrong. The correct figure is as in (a).)

2020 at 0 a.m. to Aug. 26, 2020 at 9 a.m.

graph neural networks and control river

This work was supported by JSPS KAKENHI Grant Numbers 20K20543, JP19K22026, and JP19H04135.