Sparse-Coded Dynamic Mode Decomposition on Graph

for Prediction of River Water Level Distribution

Yusuke ARAI', Shogo MURAMATSUZ, Hiroyasu YASUDA3, Kiyoshi HAYASAKA* and Yu OTAKES
NIGATA 'Graduate School of Sci. & Tech., Niigata Univ., Japan, ?Faculty of Eng., Niigata Univ., Japan, *Research Inst. for Natural oth June, 2021

UNIVERSITY

ABSTRACT

Propose combing extended dynamic mode
decomposition (EDMD) and graph filter banks
(GFBs).
@ EDMD is a data driven modeling method
for nonlinear dynamic systems.
@ We introduce DMD on graph to predict
multi-point river water levels.
@ GFBs work in combination with a sparse
approximation algorithm.
@ Graph is used to construct GFBs for
analyzing and synthesizing water levels.
@ We conduct river water level prediction for
real web-scraped data.
@ Performance evaluation shows the
superiority to the normal DMD approach.

Index Terns — Extended dynamic mode
decomposition, graph signal processing, sparse
coding, river disaster prevention

. INTRODUCTION

Problem

@ EDMD takes no account of graph
structure.

@ GFB reflects no temporal variation for
time series data.

Purpose

@ To predict temporal variation of graph
signal w/ graph structure and dynamics.
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Figure 1: Part of Shinano River system, Japan (left),
and its flooding in Qjiya on Oct. 13, 2020 (right)
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@ Utilize convolutional synthesis dictionary

for promoting sparse representation.

SC-DMD-G for prediction of river water level distribution
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Figure 4: Framework of SC-DMD-G W(x) = arg ;Ielﬁ}iux — Gyll5 + ap(y)
Learning and inference steps: . . . (2)
Step 1: Prepare a training set. {x,}"'~' of graph signals. 1ime evolution equation
Step 2: Map {x;},—, with ¥(-) to {y:}7 4 - X(t) = G®e'V'by (3)
Step 3: Find the transfer matrix K in F. Discrete version:
Step 4. Find the dynamic modes ® and eigenvalues A of K. x;, ~ G®A*b (4)

Step 5: Predict by the time evolution equation.

IV. PERFORMANCE EVALUATION

V- |. Analysis Result
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Figure 5: Graph structure of (a) Eigenvalues in Q2 (d) Mode 10 (e) Mode 11 & 12
monitoring stations in Shinano River . . -
system ’ Figure 6: Placement of the eigenvalues of SC-DMD-G (a), example of dynamic

modes in ® (b)-(e), « = 0.2 and step size v = 1.2.
(Fig. 3 in the paper was wrong. The correct figure is as in (a).)
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IV- ll. Prediction Result

@ Learning for 33 hours: from Aug. 25,
2020 at 0 a.m. to Aug. 26, 2020 at 9 a.m.
@ Inference for 87 hours: from Aug. 26,

2020 at 10 a.m. to Aug. 29, 2020 at 11
p.mM.

@ 28 monitoring stations in Shinano
River system

@ SC-DMD-G performs better than normal
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Figure 7: Result of river water level prediction at all
evaluation points (RMSE), step size v = 1.2.

V. CONCLUSION

@ Proposed SC-DMD-G w/ DMD & GFBs.

@ Demonstrated the proposed method
performs better than the normal DMD.

@ Future works: utilization of linkage with
rainfall information, dictionary learning,
graph neural networks and control river
water level
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