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ABSTRACT
Propose combing extended dynamic mode
decomposition (EDMD) and graph filter banks
(GFBs).

EDMD is a data driven modeling method
for nonlinear dynamic systems.
We introduce DMD on graph to predict
multi-point river water levels.
GFBs work in combination with a sparse
approximation algorithm.
Graph is used to construct GFBs for
analyzing and synthesizing water levels.
We conduct river water level prediction for
real web-scraped data.
Performance evaluation shows the
superiority to the normal DMD approach.

Index Terns – Extended dynamic mode
decomposition, graph signal processing, sparse
coding, river disaster prevention

I. INTRODUCTION
Problem

EDMD takes no account of graph
structure.
GFB reflects no temporal variation for
time series data.

Purpose
To predict temporal variation of graph
signal w/ graph structure and dynamics.

Figure 1: Part of Shinano River system, Japan (left),
and its flooding in Ojiya on Oct. 13, 2020 (right)

II. REVIEW OF CSC-DMD AND GFB & III. SPARSE CODED DMD ON GRAPH
Convolutional-sparse-
coded dynamic mode
decomposition
(CSC-DMD) [1]

Variant of EDMD:
High dimensional
time-series data
analysis method.

Figure 2: Example of
time-series data

Utilize convolutional synthesis dictionary
for promoting sparse representation.

Graph filter bank (GFB) [2]
Decompose and
reconstruct signals on
graph
−→ Enable us to extract
features of graph signals. Figure 3: Example

of graph signal

P-channel undecimated synthesis dictionary G

G =
(
H0 H1 · · · HP−1

)
(1)

SC-DMD-G for prediction of river water level distribution

Figure 4: Framework of SC-DMD-G

Learning and inference steps:
Step 1: Prepare a training set. {xk}N−1

k=0 of graph signals.
Step 2: Map {xk}N−1

k=0 with Ψ(·) to {yk}N−1
k=0 .

Step 3: Find the transfer matrix K in F̃ .
Step 4: Find the dynamic modes Φ and eigenvalues Λ of K.
Step 5: Predict by the time evolution equation.

xk: Graph signals
yk: Sparse representation of xk

Φ: Dynamic modes
G: Synthesis graph filter bank
Ψ(·):Sparse approx.
Λ: Eigenvalues, Ω = ln (Λ)/∆t
Problem setting of sparse approx.

Ψ(x) = arg min
y∈RL

1
2
‖x−Gy‖2

2 + αρ(y)

(2)
Time evolution equation

x(t) ≈ GΦeΩtb0 (3)
Discrete version:

xk ≈ GΦΛkb0 (4)

IV. PERFORMANCE EVALUATION
IV- I. Analysis Result

Figure 5: Graph structure of
monitoring stations in Shinano River
system

(a) Eigenvalues in Ω

(b) Mode 1 & 2 (c) Mode 4 & 5

(d) Mode 10 (e) Mode 11 & 12

Figure 6: Placement of the eigenvalues of SC-DMD-G (a), example of dynamic
modes in Φ (b)-(e), α = 0.2 and step size γ = 1.2.
(Fig. 3 in the paper was wrong. The correct figure is as in (a).)

IV- II. Prediction Result
Learning for 33 hours: from Aug. 25,
2020 at 0 a.m. to Aug. 26, 2020 at 9 a.m.
Inference for 87 hours: from Aug. 26,
2020 at 10 a.m. to Aug. 29, 2020 at 11
p.m.
28 monitoring stations in Shinano
River system
SC-DMD-G performs better than normal
DMD.

Figure 7: Result of river water level prediction at all
evaluation points (RMSE), step size γ = 1.2.

V. CONCLUSION
Proposed SC-DMD-G w/ DMD & GFBs.
Demonstrated the proposed method
performs better than the normal DMD.
Future works: utilization of linkage with
rainfall information, dictionary learning,
graph neural networks and control river
water level
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