
TITAMPERE University

FULL-DUPLEX MULTIFUNCTION TRANSCEIVER WITH JOINT CONSTANT ENVELOPE TRANSMISSION **AND WIDEBAND RECEPTION**

System model

FMCW triangular sweep radar waveform combined with FSK modulated data (1)-(4).

$$\mathbf{R}_{\star}(t) = \begin{cases} -\frac{B_{\mathrm{R}}}{2} + \frac{\rho t}{m}, \ (m-1) < \frac{t-\delta_{\star}}{T_{\mathrm{R}}} \le \frac{2m-1}{2} \\ +\frac{B_{\mathrm{R}}}{2} - \frac{\rho t}{m}, \ \frac{2m-1}{2} < \frac{t-\delta_{\star}}{T_{\mathrm{R}}} \le m, \end{cases}$$
(1)

$$_{0,\star}(t) = \frac{\Delta f}{2} \alpha(t), \ \alpha(t) \in \{\pm 1, \pm 3, \dots, \pm (2M-1)\}$$
(2)

$$f_{\star}(t) = 2\pi \left[f_{\rm c}t + \int_0^t (f_{{\rm D},\star}(\tau) + f_{{\rm R},\star}(\tau)) \,\mathrm{d}\tau \right]$$
(3)
$$f_{\star}(t) = \frac{1}{2\pi} \phi'_{\star}(t)$$
(4)

$$d_{\star}(t) = \frac{1}{2\pi} \phi_{\star}'(t)$$

At reception, received signal is downconverted with the FMCW signal, with frequencies $f_{\rm R}(t)$.

- Sweeping signals have fixed carrier frequencies equal to the time difference $t_{\bigstar k}$ of the echo k from TRX \bigstar .
- Due to triangular FMCW waveform, the carrier frequency shifts rapidly between positive and negative carrier during $\Delta T_{\rm R}$.
- Previously fixed signals are now sweeping the band according to the FMCW signal.

• All of the TRXs need to have the same FMCW bandwidth $B_{\rm R}$ and sweep rate ρ .

The fixed delays δ_{\pm} are used to offset the sweeping signals to reduce overlap.

$$\Delta T_{\rm R} = \delta_{\rm B} - \delta_{\rm A}.$$

Fig. 2. (a) Example waveforms of the FMCW, FSK and the combined signal. (b) Example waveform of the FMCW signal from TRX B after downconversion at TRX A. (c) Transceiver structure and signal processing.

Multifunction receive processing

Fig. 3. One-sided spectrum of the downconverted signal, where the shift to the negative frequencies during $\Delta T_{\rm R}$ is shown.

- caused by the FSK.

 $f_{\rm HPF_D} = \frac{\Delta f}{2} (2M - 1) + \rho t_{K,A}$ (5)

operations:

$$\tilde{f}_B(t) =$$

- normal means (7).

Jaakko Marin, Micael Bernhardt, and Taneli Riihonen

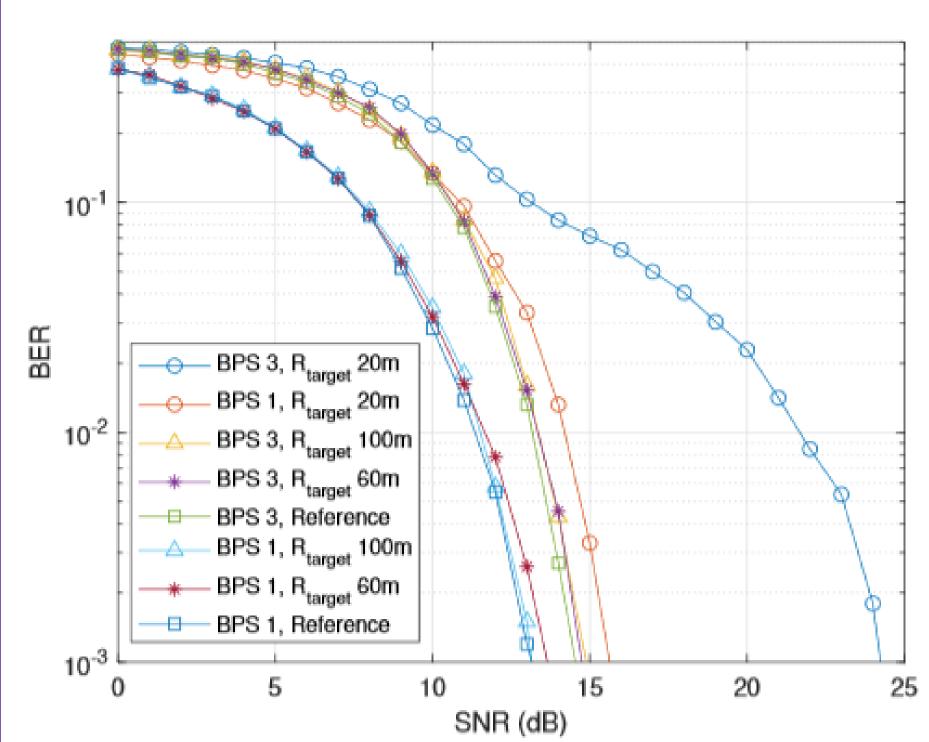
$\{ a_k , b_k \}$	$t_{1,A}$	t_{z}	1, B
$\Delta T_{ m R}$	t_K	A,A	$t_{2,B}$
			$\begin{bmatrix} t_{2,B} \\ \dots \\ t_{K_B,B} \end{bmatrix}_f$

• After downconversion, radar information is in the center frequency of the echoes, data is in the frequency shifts

> Sweep compensation and highpass filters can be used to remove interference.

For data reception, SI and echoes removed with a HPF with a cutoff frequency of

Sweeping of both TRX compensated with multiplication


 $f_{B,A}(t) = f_B(t - t_{1,B}) - f_{\text{LO},A}(t)$ $= f_{\mathrm{D},B}(t - t_{1,B}) + f_{\mathrm{R},B}(t - t_{1,B}) - f_{\mathrm{R},A}(t).$ (6)

> $f_{B,A}(t) + (f_{R,A}(t) - f_{R,B}(t - \hat{t}_{1,B}))$ (7) $= f_{\mathrm{D},B}(t - t_{1,B})$

The FSK data from TRX B can be demodulated through

Similar compensation and filtering can be done to remove the TRX B signal before radar calculations.

Simulation results

FMCW sweeping.

- decibels.

Two FSK-FMCW tranceivers, A and B.

Following parameters were used in the simulations:

- FSK-FMCW parameters
 - M = 1 and 3 (BPS), $\Delta f = 200$ kHz, symbol duration 0.1 ms.
 - $B_{\rm R} = 80$ MHz, $\rho = 33 \,\mu s$ (4.8 MHz/ μs).
 - $\Delta T_{\rm R} = 4.2 \,\mu {\rm s} \,(20 \,{\rm MHz})$ difference
 - between TRX A and B.

• Single radar target

- Doppler velocity = 100 m/s.
- $RCS = 200 \text{ m}^2$
- Distances 20, 60 and 100 m.

Fig. 4. Simulated FSK demodulation performance. The reference case is half-duplex operation without

The FSK demodulation works as well as the reference case when the radar target is at least 60 m away.

Radar performance was found to be as good as the reference case when TRX B signal's SNR was under several tens of

June 6-11