Optimizing Short-Time Fourier Transform Parameters via Gradient Descent

International Conference on Acoustics, Speech, & Signal Processing Toronto, Ontario, 2021 April

An Zhao Krishna Subramani Paris Smaragdis

The problem

Short Time Fourier Transforms need manual tuning • Size parameters (length and hop) are not differentiable

N/2n = -N/2

But choosing proper values is crucial for many tasks

 $F_W[m,k] = \sum' x[m+n]W_m[n]e^{-j\frac{2\pi}{N}kn}$

Our Goal

- Optimize window size N and hop size H
- We want to use gradient descent

Differentiable Short Time Fourier Transform sizes

• Which will help incorporate this into deep network designs • e.g. auto-tune the STFT front-end of a denoiser or sound classifier

But directly differentiating integer values is a no-go

A motivating problem

Obtaining a sparse STFT representation

 Poor values for DFT size create a stepping effect; good value conveys the input signal better

Approaching the problem

• We specifically use the kurtosis of the STFT output

$$C[m, W] = \frac{\sum_{k=1}^{N} \left(\sum_{k=1}^{N} \frac{\sum_{k=1}^{N} \left(\sum_{k=1}^{N} \frac{\sum_{k=1}^{N} \frac{\sum_$$

 Maximizing this will result in sparsity • Which minimizes blurring on time and frequency axes

We use time/frequency sparsity as the cost function

 $\frac{1}{E_{W}[m,k]|^{4}}{|F_{W}[m,k]|^{2})^{2}}$

Optimizing window size

- How to optimize w.r.t discrete DFT size N? Introduce a continuous proxy!
- Optimize loss w.r.t. an analysis window spread σ
 - $W_m[n] = \exp$
- Then infer transform size as $N = |6\sigma|$ • σ is continuous and can easily be optimized via gradient descent

$$\left[-\left(\frac{n}{2\sigma}\right)^2\right]$$

Example on drum sound

Select optimal window length by optimizing sparsity (instead of eyeballing)

Optimizing size dynamically

- E.g. when the input sound varies from slow to fast
- More complex optimization problem We need to adjust hop size and window accordingly
- We use trapezoidal window formulation • We estimate the start and end of trapezoidal windows

We often need to change the window size over time

Dynamically varying size and hop?

- Trapezoidal window

sample index

Transform and hop size determined by the trapezoid shape Monotonic Mapping from window index to audio

Parametric model for window placement

- Unconstrained Monotonic Neural Nets (UMNNs) can be used for differentiable mapping
 Determines window distribution across audio
- Loss computed as sum of Kurtosis across each windowed audio segment $\mathcal{L}_q = -\sum_{\forall m} C[m, W]$
- UMNN weights updated via GD to obtain optimal window distribution that maximizes sparsity

Example on exponential chirp

Optimizing for sparsity again • As chirp progresses window size shrinks to reduce freq. blurring

Linear chirps and steady tones

Constant window for chirp, large windows for tones

Drums and slow piano notes example

What about other cost functions

• What if we want to optimize w.r.t a specific downstream task like classification?

Classification Loss

Penalize Small Windows

 $\frac{\lambda}{-}$ $\mathcal{L}_C = -\sum_{\forall m} \sum_i t_i[m] \log(z_i[m]) +$

Differentiable Search over Grid Search!

- - E.g. a classification neural net

 Obtain final "optimal" window length differentiably • Significant speedup by avoiding search over many points Can be integrated inside larger processing system

1400 Epoch

Conclusions

- - More efficient alternative to expensive grid search
- Optimization can be done w.r.t. arbitrary tasks • Can be used for a variety of methods

 Optimizing STFT parameters using gradient descent • Allows auto-tuning of STFT inside larger neural net pipelines

Methodology useful for other integer parameters