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•𝐱: A zero-mean stationary Gaussian input signal.

•𝑅𝐱(𝑙): The autocorrelation function of 𝐱 for the lag 𝑙.

•𝛕: A threshold which is considered zero in previous works.

•𝐲: The output process (one-bit data).

•𝑅𝐲(𝑙): The autocorrelation function of 𝐲 for the lag 𝑙.

The autocorrelation function of 𝐲 in lag 𝑙 is connected to that of 𝐱 via the

arcsine law:
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2

𝜋
sin−1

𝑅𝐱(𝑙)

𝑅𝐱(0)
.

Arcsine law has two main drawbacks. It considers only the zero threshold

which causes information loss due to normalized autocorrelation recovery.

In this paper, our goal is to modify the arcsine law by considering the time-

varying threshold which enables us to recover the unnormalized

autocorrelation values. In the other words, we can recover the variance and

off-diagonal autocorrelation values, separately.

1. Motivation

2. Problem Formulation

3. Covariance Recovery Method

Since evaluating the integral in (2) appears to be difficult, we resort to

rational approximations to facilitate its evaluation. The 𝑄 function is well

approximated with the sum of exponentials,
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3 , 𝑥 > 0.

We further note that the integral in (2) may be evaluated by substituting
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piece-wise Padé approximants, that yield the best approximation of a

function by a rational function of given order through the moment

matching technique. Thus, 𝐷2 is represented as

Similar approximations can be obtained for terms associated with the

function 𝐷1.

4. Numerical Results

Our results reveal that it can estimate the variance and autocorrelation

values, precisely (𝑑 = 0.7, 𝚺 = 0.3𝑰).

Autocorrelation sequence recovery for random sequence of length 31:

The impact of a growing sample size in the variance recovery:

5. Conclusion

We proposed a modified arcsine law through Padé approximations that can

make use of non-zero time-varying thresholds in one-bit sampling. Also,

the numerical results showcase the effectiveness of the proposed approach

in recovering the autocorrelation values of one-bit sampled stationary

signals.

Let’s assume 𝛕 ≠ 𝟎, and 𝐱 and 𝛕 (𝛕 ~𝒩 𝐝, 𝚺 ) are independent random

vectors. We define a new random process 𝐰 such that 𝐰 = 𝐱 − 𝛕. Clearly,

𝐰 is a Gaussian stochastic process 𝐰~𝒩 −𝐝,𝑷 where 𝑷 = 𝑹𝐱 + 𝚺.

Therefore, with these defaults, we can obtain the main formalism of output

autocorrelation function as:

where:

𝛼 =
𝑑(sin 𝜃+cos 𝜃)

𝑝0+𝑝𝑙
,
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𝑝0−𝑝𝑙 sin 2𝜃

2 𝑝0
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2 .

Also, 𝑝𝑙 and 𝑝0 denote the autocorrelation term for lag 𝑙 and variance of 𝐰,

respectively. It remains to evaluate the integral in (2) in terms of 𝑝0 and

{𝑝𝑙} which have to be estimated-a task that is central to our efforts in the

rest of this paper. Finding 𝑝0 and {𝑝𝑙} results in input variance and

autocorrelation recovery, which can be achieved by considering the

relation:

𝑹𝐱 = 𝑷 + 𝚺.
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𝑝0 and 𝑝𝑙 are estimated by formulating a minimization problem. For this

purpose, one may consider the following criterion:

where the autocorrelation of output signal can be estimated with the give

sign vector (𝐲) via the sample covariance matrix

Note that by now we have derived an approximated version of (2). Let

𝐻(𝑝0, 𝑝𝑙) denote this approximation. Therefore, we can alternatively

consider the criterion:

To filter out the undesired local minima, we resort to constraints reinforcing

the behavior of an autocorrelation function. More precisely, we will consider

the minimization problem:

where the first inequality constraint in (10) is imposed to ensure that the

magnitude of the diagonal elements of the covariance matrix of 𝐰 is greater

than the magnitude of the off-diagonal elements. The non-convex problem

in (10) may be solved via the gradient descent numerical optimization

approach by employing multiple random initial points. Once 𝑝0 and 𝑝𝑙 are

obtained, one can estimate the autocorrelation values of 𝐱 via (4).
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