

Order Dispatching in Ride-Sharing Platform under Travel Time Uncertainty: A Data-Driven Robust Optimization Approach (Paper ID: 40)

Affiliations: Concordia University, Ericsson Incorporation Authors: <u>Xiaoming Li</u>, Jie Gao, Chun Wang, Xiao Huang, Yimin Nie Presented by: <u>Xiaoming Li</u>

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- > Experimental Results
- Conclusions and Future Work

Concordia

Introduction to Ride-Sharing in Mobility on Demand Systems

- Ride-sharing platforms such as Uber, Lyft, and Didi have reshaped the transportation mode.
- Ride-sharing is a transportation mode where the travelers have similar itineraries in mobility on demand systems.
- Merits and advantages for both riders (demand side) and drivers (supply side). Reduce cost by sharing, reduce traffic congestion by decreasing fleet, etc.

Source: https://disrupt-africa.com/2016/12/20/ridesharing-platform-gawana-to-launch-in-rwanda/

Concordia

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- Experimental Results
- Conclusions and Future Work

Problem Description

IEEE IEEE ICAS 2021 INTERNATIONAL CONFERENCE ON AUTONOMOUS SYSTEMS Montréal, Canada | August 11–13, 2021

- A set of drivers, a set of riders, and a central operator for the ride-sharing platform
- Travelers (drivers / riders) claim their origins and destinations (coordinates) as well as their earliest departure times and latest arrival times
- Travel time is considered under uncertainty
- One-to-one matching to find the optimal solutions such that the overall travel time savings is maximized under worse-case scenario (maximum travel time delay)

dist(o(d), w(d)) - dist(o(d), o(r)) - dist(w(r), w(d))

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- Experimental Results
- Conclusions and Future Work

Methodology and Formulation

- Robust optimization. To maximize the overall travel time saving under worst-case scenario (maximum travel time delay), while a group of constraints must be satisfied.
- The construction of uncertainty set. The nominal travel time and travel time deviation are assumed to be time-series data. Therefore, time-series forecasting approach (ARIMA in this work) is introduced.

 $U_1 = \{\xi \mid ||\xi||_1 \le \Gamma\} = \left\{\xi \mid \sum_{j \in J_i} |\xi_j| \le \Gamma\right\}$

 The derived uncertainty set will be used as the input for the robust optimization model.

TABLE I: Notation Table for Mathematical Models

Sets	Description
\mathcal{D}^k	A set of drivers at time k , indexed by d
\mathcal{R}^k	A set of riders at time k , indexed by r
L	A set of regions indexed by i and j
\mathcal{A}^k	A set of travelers at time k , indexed by $a, \mathcal{A}^k = \mathcal{D}^k \cup \mathcal{R}^k$
${\mathcal T}$	A set of time slots, indexed by k
U	The uncertainty set of travel time between regions
Parameters	Description
$t_{i,j}$	The realized travel time from region i to j , $t_{i,j} = \bar{t}_{i,j} + \xi_{i,j}\tilde{t}_{i,j}$
$ar{t}_{i,j}$	The nominal travel time from region i to j
$ ilde{t}_{i,j}$	The travel time deviation from region i to j
Г	The uncertainty degree of the polyhedral uncertainty set
o(a), w(a)	The origin and destination of $a, o(a), w(a) \in \mathcal{L}$
es(a), la(a)	The earliest starting time and latest arrival time of a)
Variables	Description
$x_{d,r} \in \{0,1\}$	Matching status that is equal to 1 if driver d and rider r is matched
$dt_d \in \mathbb{R}_+$	The departure time of driver d
$\xi_{i,j} \in \mathcal{U}$	Random variables whose values vary in the given uncertainty sets
	7

Methodology and Formulation

$$\overline{T}_{d,r}^{0} + \min_{\xi \in \mathcal{U}} \xi_{d,r}^{0} \widetilde{T}_{d,r}^{0} + H(1 - x_{d,r}) \ge 0, \forall d \in \mathcal{D}^{k}, \forall r \in \mathcal{R}^{k},$$
(2a)

$$dt_d \ge es(d), \quad \forall d \in \mathcal{D}^k,$$
 (2b)

$$dt_d + t_{o(d),o(r)} + \min_{\xi \in \mathcal{U}} \xi_{o(d),o(r)} t_{o(d),o(r)} + H(1 - x_{d,r})$$

$$\geq es(r), \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k,$$

(2c)

$$dt_d + \overline{T}^1_{d,r} + \min_{\xi \in \mathcal{U}} \xi^1_{d,r} \widetilde{T}^1_{d,r} \leq la(r) + H(1 - x_{d,r}),$$

$$\forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \quad (2d)$$

$$dt_d + \overline{T}_{d,r}^2 + \min_{\xi \in \mathcal{U}} \xi_{d,r}^2 \widetilde{T}_{d,r}^2 \leq la(d) + H(1 - x_{d,r}),$$

$$\forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \quad (2e)$$

$$\sum_{r \in \mathcal{R}} x_{d,r} \leqslant 1, \quad \forall d \in \mathcal{D}^k, \tag{2f}$$

$$\sum_{d \in \mathcal{D}} x_{d,r} \leqslant 1, \quad \forall r \in \mathcal{R}^k,$$
(2g)

$$x_{d,r} \in \{0,1\}, \quad \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k,$$
 (2h)

 $dt_d \in \mathbb{R}_+, \quad \forall d \in \mathcal{D}^k,$

8

(2i)

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- > Experimental Results
- Conclusions and Future Work

Experimental Results

- Experiment setup. Python 3.7, Gurobi 9.0, Intel Core i7 CPU, 32 GB RAM, Win 10
- Data sets. New York taxi trip records, January 2017 June 2017. Seven regions and six time slots are selected.

TABLE II: The total number of riders and drivers in the ride-sharing regions during the given time slots

Time Slots No.	1	2	3	4	5	6
Num. of Rider	33	209	102	158	67	153
Num. of Drivers	40	251	123	190	81	184

The comparison of average travel time savings

TABLE IV: The comparison of average travel time savings for the ride-sharing systems (in minutes) by data-driven and non-data-driven robust optimization under different levels of uncertainty degree. For each time slot, the top row is derived from data-driven robust optimization, the bottom row is derived from non-data-driven robust optimization, and the change compared to non-data-driven robust optimization is in the middle in italics.

Time Slots $\backslash \Gamma$	0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
06/01/2017 00	1.88	1.85	1.73	1.69	1.50	1.49	1.21	0.93	0.74	0.62	0.52
	(16.8%)	(22.5%)	(27.2%)	(74.2%)	(92.3%)	(112.8%)	(83.3%)	(60.3%)	(89.7%)	(87.9%)	(79.3%)
06/01/2017 00	1.61	1.51	1.36	0.97	0.78	0.7	0.66	0.58	0.39	0.33	0.29
06/01/2017 17	1.57	1.55	1.53	1.47	1.44	1.41	1.35	1.26	1.15	1.05	0.91
	(3.3%)	(2.6%)	(3.8%)	(1.0%)	(1.0%)	(2.2%)	(1.5%)	(3.3%)	(3.6%)	(18.0%)	(8.3%)
06/01/2017 17	1.52	1.51	1.48	1.46	1.43	1.38	1.33	1.22	1.11	0.89	0.84
06/03/2017 00	1.79	1.76	1.74	1.73	1.72	1.69	1.57	1.51	1.33	1.17	1.02
	(42.1%)	(44.3%)	(20.7%)	(54.5%)	(53.6%)	(70.7%)	(70.6%)	(64.1%)	(75.0%)	(77.3%)	(61.9%)
06/03/2017 00	1.26	1.22	1.16	1.14	1.12	0.99	0.92	0.92	0.76	0.66	0.63
06/03/2017 17	1.77	1.77	1.75	1.64	1.58	1.54	1.48	1.31	1.23	1.17	0.99
	(1.1%)	(4.7%)	(6.7%)	(6.5%)	(12.1%)	(17.5%)	(25.4%)	(25.9%)	(30.8%)	(48.1%)	(47.8%)
06/03/2017 17	1.75	1.69	1.64	1.54	1.41	1.31	1.18	1.04	0.94	0.79	0.67
06/18/2017 00	2.21	2.20	2.18	2.13	2.12	2.10	2.08	2.04	1.94	1.81	1.57
	(28.5%)	(27.9%)	(29.0%)	(27.5%)	(26.9%)	(29.6%)	(40.5%)	(53.4%)	(63.0%)	(60.2%)	(40.2%)
06/18/2017 00	1.72	1.72	1.69	1.67	1.67	1.62	1.48	1.33	1.19	1.13	1.12
06/18/2017 17	1.87	1.83	1.81	1.79	1.76	1.76	1.68	1.66	1.58	1.55	1.47
	(27.2%)	(26.2%)	(30.2%)	(30.7%)	(30.4%)	(33.3%)	(31.3%)	(40.7%)	(38.6%)	(46.2%)	(44.1%)
06/18/2017 17	1.47	1.45	1.39	1.37	1.35	1.32	1.28	1.18	1.14	1.06	1.02
Avg.	1.85	1.83	1.79	1.74	1.69	1.67	1.56	1.45	1.33	1.23	1.08
Avg.	(19.4%)	(20.4%)	(23.4%)	(27.9%)	(31.0%)	(36.9%)	(36.8%)	(39.4%)	(44.6%)	(51.9%)	(42.1%)
Avg.	1.55	1.52	1.45	1.36	1.29	1.22	1.14	1.04	0.92	0.81	0.76

11

The comparison of violation rates

The metric to measure the robustness of solution (the unmatched rates of rider)

Fig. 3: Comparison of violation rates by data-driven robust optimization and non-data-driven robust optimization

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- Experimental Results
- Conclusions and Future Work

Concordia

Conclusions and Future Work

- Conclusions. We propose a data-driven robust optimization approach to address order dispatching in ride-sharing platform. The framework organically integrates time-series predictor and robust optimization model.
- Future work.
 - To extend one-to-one driver and rider matching to one-to-many matching (i.e., one driver can pick up more than one rider).
 - To utilize different types of uncertainty sets to validate the performance of robust optimization models.

Thank you !

Questions?

