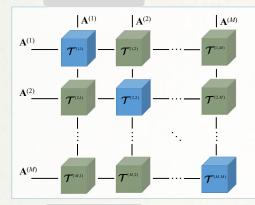
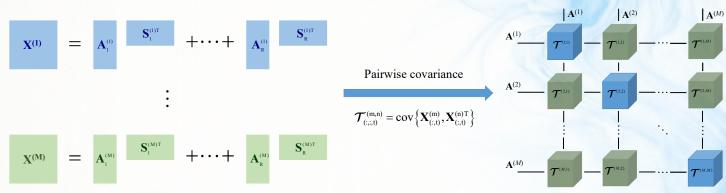
Coupled Rank-(L_m, L_n, ·) Block Term Decomposition

Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer

E-mail: xfgong@dlut.edu.cn

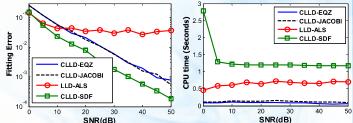



WHAT?

• Each tensor $\mathcal{T}^{(m, n)}$ has a rank- (L_m, L_n, \cdot) BTD formulation

- **Double coupling structure:**
- Tensors $\mathcal{T}^{(m, 1)}$, $\mathcal{T}^{(m, 2)}$, ..., $\mathcal{T}^{(m, M)}$ have common factor matrix $\mathbf{A}^{(m)}$ in the first mode;
- Tensors $\mathcal{T}^{(1,n)}$, $\mathcal{T}^{(1,n)}$, ..., $\mathcal{T}^{(M,n)}$ have common factor matrix $\mathbf{A}^{(n)}$ in the second mode.

WHY?


Multi-set convolutive mixture

Coupled rank- (L_m, L_n, \cdot) BTD

Via pairwise cross covariance between each pair of datasets we convert a joint independent subspace analysis (J-ISA) problem to the coupled rank-(L_m , L_n , \cdot) BTD problem.

HOW?

- **Coupled Block Simultaneous Generalized Schur Decomposition (CB-SGSD):**
- Extension of existing works on SGSD [A.-J. van der Veen, etc. 1996, L. De Lathauwer, etc. 2004, A. Stegeman, 2009] to the block and coupled case.
- We proposed two algorithms for its computation: (1) via extended QZ iteration; (2) Jacobi.
- Structured data fusion (SDF):
- The coupled rank- (L_m, L_n, \cdot) BTD can be implemented via SDF (www.tensorlab.net).
- **Proposed vs. SDF:**
- SDF is more accurate but sensitive to initialization. Proposed algorithms are faster, and thus can be used to provide low-cost initialization for SDF.

Proposed (CLLD-EQZ, CLLD-JACOBI) vs. SDF implementation (CLLD-SDF) and single tensor based uncoupled ALS algorithm (LLD-ALS).