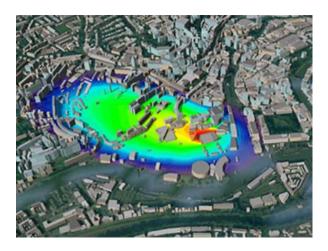


Australian Government

Department of Defence Science and Technology


Estimation of Fields Using Binary Measurements From a Mobile Agent

Alex Leong, Mohammad Zamani Defence Science and Technology Group, Australia

IEEE International Conference on Autonomous Systems, Aug. 2021

Introduction

- In the presence of a CBRN (chemical, biological, radiological, and nuclear) event, mapping out the contaminated area / field is an important task in allowing operations to be carried out
 - Humanitarian, disaster relief, military ...
 - Want to do it as quickly and accurately as possible

Outline

- Introduction
 - Mobile Autonomous Agents
 - System Model
- Field Estimation
- Active Sensing
- Simulation Results
- Conclusion

Use of Mobile Autonomous Agents

- Significant previous research on using wireless sensor networks for environment monitoring
 - Large number of (mostly) static sensors spread out over an area
- We often won't know when and where CBRN attacks occur
 - Assumption of a large number of sensors already in place may not be realistic
 - Assume instead the use of a mobile autonomous vehicles / agents with sensors onboard, which can move around to collect measurements at different locations

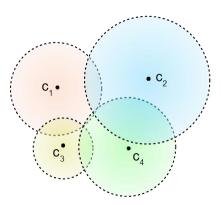
DST

Previous work

- Source localization using mobile agents
 - Non-binary measurements [Ristic, Morelande, Gunatilaka, 2010]
 - Binary measurements, single source [Selvaratnam et.al., 2019]
- Field estimation with static sensors, binary measurements
 - [Battistelli et.al., 2019]
- Field estimation using mobile agents, non-binary measurements
 - [La, Sheng, Chen, 2015], [Razak, Sukumar, Chung, 2019]
- Our work: Field estimation using mobile agents, binary measurements
 - Concentrate on single agent case

Measurement Model

- Radiological sources can be measured pretty accurately
- Chemicals used in attacks may be of very low concentration
- Current chemical sensing technologies cannot give very precise readings of such concentrations
 - Noisy and time varying


6

- Sensor outputs could be one of several levels
- Assume noisy and coarsely quantized measurements
 - $z(\mathbf{x}) = q(\phi(\mathbf{x}) + v(\mathbf{x}))$, where **x** is position, ϕ is field value, v is Gaussian noise, q is quantizer
 - In this work will consider special case of noisy binary measurements -____ reading is above or below a known threshold au

 $z(\mathbf{x}) = \mathbb{1}(\phi(\mathbf{x}) + v(\mathbf{x}) > \tau)$ (algorithms will still hold for general case)

Field Model

- Approximate the field as a sum of basis functions
- Field model: $\phi(\mathbf{x}) = \sum_{j=1}^{J} \beta_j K_j(\mathbf{x})$

where β_j are weights, $K_j(\mathbf{x}) = \exp\left(-\frac{||\mathbf{c}_j - \mathbf{x}||^2}{\sigma_j^2}\right)$ are (radial) basis functions

- Used in works such as [Morelande, Skvortsov, 2009], [La, Sheng, Cheng, 2015], [Razak, Sukumar, Chung, 2019]
- Mathematical results prove that for J large enough, can approximate many fields to arbitrary accuracy
- Parameter estimation approach: Pick a (large) J, choose c_j 's and σ_j 's, and estimate the β_j 's

7 *******************

Field Estimation

- Field estimation problem reduces to problem of estimating parameters $\theta = (\beta_1, \dots, \beta_J, \sigma_v^2)$ where σ_v^2 is measurement noise variance
- We want to compute the posterior pdf p(θ|z₁,..., z_k; x₁,..., x_k) where z_k is the k-th measurement collected
 - Parameter estimates can then be derived from the posterior pdfs
- Exact computation of posterior pdfs is generally intractable
- Posterior pdfs can be computed approximately using sequential Monte Carlo / particle filtering techniques
 - Use approach of [Liu, West, 2001] suitable for estimation of constant parameters (rather than time-varying states)

Field Estimation

Algorithm 1 Sequential Monte Carlo algorithm for parameter estimation

- 1: Algorithm Parameters: $N \in \mathbb{N}$, $a \in (0, 1)$, $h = \sqrt{1 a^2}$, $\eta \ge 0$, prior pdf $p_0(\boldsymbol{\theta})$
- 2: Inputs: Measurement locations $\{\mathbf{x}_k\}$
- 3: **Outputs**: Particles $\{\boldsymbol{\theta}_k^{(i)}\}$ and weights $\{\boldsymbol{w}_k^{(i)}\}$
- 4: Sample particles $\boldsymbol{\theta}_0^{(i)}, i = 1, \dots, N$ from $p_0(\boldsymbol{\theta})$, and assign weights $\boldsymbol{w}_0^{(i)} =$ $\frac{1}{N}, i = 1, \dots, N$
- 5: for k = 1, 2, ..., do
- Observe z_k at location \mathbf{x}_k 6:

7: for
$$i = 1, \ldots, N$$
 do

8: Compute
$$\mathbf{m}_{k-1}^{(i)} = a\boldsymbol{\theta}_{k-1}^{(i)} + (1-a)\bar{\boldsymbol{\theta}}_{k-1}$$
, where $\bar{\boldsymbol{\theta}}_{k-1} = \sum_{i=1}^{N} \boldsymbol{w}_{k-1}^{(i)} \boldsymbol{\theta}_{k-1}^{(i)}$
9: Assign $\tilde{\boldsymbol{w}}_{k}^{(i)} \propto p(z_{k}|\mathbf{m}_{k-1}^{(i)};\mathbf{x}_{k})\boldsymbol{w}_{k-1}^{(i)}$

end for 10:

- Normalize $\{\tilde{\boldsymbol{w}}_k^{(i)}\}$ such that $\sum_{i=1}^N \tilde{\boldsymbol{w}}_k^{(i)} = 1$ 11:
- Sample N times with replacement a set of indices $\{i^- : i = 1, ..., N\}$, 12:from a distribution with probabilities $\mathbb{P}(i^- = j) = \tilde{\boldsymbol{w}}_k^{(j)}$

13: **for**
$$i = 1, ..., N$$
 do

14: Sample a particle
$$\boldsymbol{\theta}_{k}^{(i)} \sim \mathcal{N}(\mathbf{m}_{k-1}^{(i^{-})}, h^{2-\eta}\mathbf{V}_{k-1})$$
, where $\mathbf{V}_{k-1} = \sum_{i=1}^{N} \boldsymbol{w}_{k-1}^{(i)} (\boldsymbol{\theta}_{k-1}^{(i)} - \bar{\boldsymbol{\theta}}_{k-1}) (\boldsymbol{\theta}_{k-1}^{(i)} - \bar{\boldsymbol{\theta}}_{k-1})^{T}$
15: Assign weights $\boldsymbol{w}_{k}^{(i)} \propto \frac{p(z_{k}|\boldsymbol{\theta}_{k}^{(i)};\mathbf{x}_{k})}{p(z_{k}|\mathbf{m}_{k-1}^{(i^{-})};\mathbf{x}_{k})}$

- end for 16:
- Normalize $\{\boldsymbol{w}_{k}^{(i)}\}$ such that $\sum_{i=1}^{N} \boldsymbol{w}_{k}^{(i)} = 1$ 17:18: **end for**

Active Sensing

- Given a set of measurements (z₁,..., z_k) and their locations (x₁,..., x_k) the particle filtering approach computes posterior pdfs and hence parameter estimates
- Can we "optimize" the locations in which measurements are made, to reduce the time needed to accurately map the field?
- Active sensing actively choose locations for the sensor measurements, based on measurements currently collected
- One approach to active sensing is based on Renyi divergence
 - [Kreucher et.al, 2007], [Ristic, Morelande, Gunatilaka, 2010]

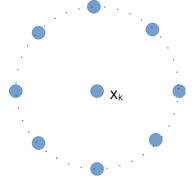
Active Sensing

- Renyi divergence between two pdfs $f_1(.), f_2(.)$ defined as $D_{\alpha}(f_1||f_0) \triangleq \frac{1}{\alpha - 1} \ln \int f_1^{\alpha}(\mathbf{t}) f_0^{1-\alpha}(\mathbf{t}) d\mathbf{t}$
 - a measure of the difference between two pdfs (Kullback-Leibler divergence is a special case as $\alpha \to 1$)
- Approach to active sensing
 - look at expected Renyi divergence $\mathbb{E}[D_{\alpha}(p(\theta|z_{1:k};\mathbf{x}_{1:k})||p(\theta|z_{1:k+1};\mathbf{x}_{1:k+1}))]$ between posterior pdf at current location \mathbf{x}_k and posterior pdf at a set of candidate future locations \mathbf{x}_{k+1}
 - pick the future location which maximizes this
 - Intuition: Larger divergence means more "information" can potentially be obtained at the new location

Active Sensing

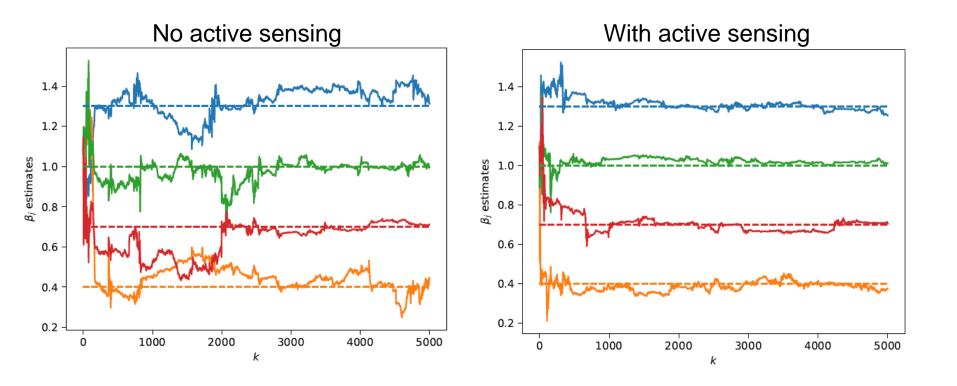
Algorithm 2 Active sensing algorithm: $\mathbf{x}_{k+1} = \texttt{ActiveSensing}(\mathbf{x}_k, \{\boldsymbol{\theta}_k^{(i)}\})$

- 1: Algorithm Parameters: $\varepsilon \ge 0, \alpha \in [0,\infty) \setminus \{1\}, \rho_0 \ge 0, N_{\rho} \in \mathbb{N}, N_d \in \mathbb{N},$ search region \mathcal{S}
- 2: Inputs: $\mathbf{x}_k, \{ \boldsymbol{\theta}_k^{(i)} \}$
- 3: **Output**: Next measurement location \mathbf{x}_{k+1}
- 4: With probability ε set \mathbf{x}_{k+1} to a random location in \mathcal{S} , otherwise set


$$\mathbf{x}_{k+1} = \arg \max_{\mathbf{x}' \in \mathcal{X}_k} \frac{1}{\alpha - 1} \sum_{z_{k+1}=0}^{1} \gamma_1(z_{k+1} | \mathbf{x}') \ln \frac{\gamma_\alpha(z_{k+1} | \mathbf{x}')}{(\gamma_1(z_{k+1} | \mathbf{x}'))^\alpha}$$

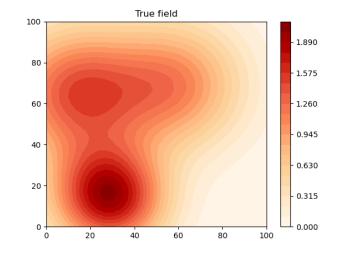
where

$$\mathcal{X}_{k} = \left\{ \mathbf{x}_{k} + \left(n\rho_{0} \cos\left(\frac{2\pi\ell}{N_{d}}\right), n\rho_{0} \sin\left(\frac{2\pi\ell}{N_{d}}\right) \right), \\ n = 0, \dots, N_{\rho}, \ell = 0, 1, \dots, N_{d} - 1 \right\} \cap \mathcal{S}$$
$$\gamma_{\alpha}(z_{k+1}|\mathbf{x}') = \frac{1}{N} \sum_{i=1}^{N} p(z_{k+1}|\boldsymbol{\theta}_{k}^{(i)}; \mathbf{x}')^{\alpha}$$

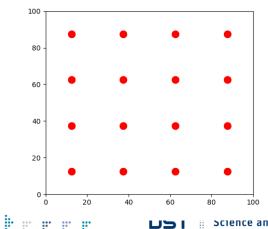

Simulation Studies – Example 1

- J = 4 basis functions
- True values of \mathbf{c}_j 's and σ_j 's known
- Candidate future locations to optimize over in active sensing algorithm
 - Current location plus eight directions

Simulation Studies – Example 1



ŀ ŀ ŀ ŀ . ŀ ŀ 14 ŀ ŀ . . ŀ . ŀ ŀ ŀ ŀ


DST

Simulation Studies – Example 2

- True field as shown
- True values of \mathbf{c}_j 's and σ_j 's not known

For field estimation, use J = 16 basis functions, c_j 's located on a "grid", $\sigma_j = 25, \forall j$

Simulation Results – Example 2

	18.04 (Snapshot 9) [Running] - Oracle VM VirtualBox hine View Input Devices Help		– a ×
~	s 🔄 Terminator 🕶	alex matex virtual for =	
	≫ one checking log file disk usage. Usage is <168.	105001E11L()://10.02.15.11511/204A23	
	started roslaunch server http://10.0.2.15:36149/ os_comm version 1.14.10		
	UMNARY		
?	<pre>/ARAMETERS * /rosdistro: melodic * /rosversion: 1.14.10</pre>		
2	IODES		
AN I	uto-starting new master rocess[master]: started with pid [15799] ROS_MASTER_URI=http://10.0.2.15:11311/		
1	etting /run_id to 2bef55fc-b2d9-11eb-a3f1-080027294ad9 process[rosout-1]: started with pid [15810] tarted core service [/rosout]		
	alex@alex-VirtualBox: ~/Distributed_swarm/Simulatio	on Catkin 101x23 B alex@alex-VirtualBox: ~/Distributed swarm/Swarm Catkin 101x23	
×	<pre>WARN] [1620881114.818373962]: Received JointState is 1620877334.1 WARN] [1620881124.819137496]: Received JointState is 1620877335.1 WARN] [1620881134.828810522]: Received JointState is 1620877335.3 WARN] [1620881144.849965983]: Received JointState is 1620877337.3 WARN] [1620881164.651388181]: Received JointState is 1620877337.3 WARN] [1620881164.651388181]: Received JointState is 1620877337.3 WARN] [1620881164.651388181]: Received JointState is 1620877337.3 WARN] [1620881194.9651983]: Received JointState is 1620877337.3 WARN] [1620881194.967907365]: Received JointState is 1620877339.0 WARN] [1620881204.915065100]: Received JointState is 1620877340.1 WARN] [1620881204.915065100]: Received JointState is 1620877340.7 Chusky 1/husky_1 laser_tf-9] killing on exit husky_1/kust_mux-7] killing on exit husky_1/twist_marker_server-5] killing on exit husky_1/twist_marker_server-5] killing on exit husky_1/broadcast-4] killing on exit husky_1/broadcast-4] killing on exit husky_1/broadcast-4] killing on exit husky_1/broadcast-4] killing on exit husky_1/kef_localization-3] killing on exit husting down processing monitor shutting down processing monitor</pre>	133089 seconds old. [INF0] [1620881154.459074]: k=999, beta_hat=[0.71237087 0.20991344 1.1169853! 882778 seconds old. 589 0.32110188 463797 seconds old. 1.16215942 0.609799654 -0.06392281 -0.36365867 0.54374373 0.36246546 905425 seconds old. -0.08087197 -0.21089496 0.39161212 -0.24028667], sigma_v hat=0.380335 835352 seconds old. [INF0] [1620881154.602130]: field estimation done! 126234 seconds old. ^C[husky_1/waypoint_follower-11] killing on exit 896134 seconds old. [husky_1/teid_estimator-10] killing on exit 181871 seconds old. [husky_1/twist_controller-8] killing on exit	exit
			🖉 🛄 🔛 🚰 🚺 🚱 😃 Righ
		n 😸 😚 🎐 🏤	ENG 13/05/2021

Conclusion

- Field estimation can be done even with coarsely quantized / binary measurements
- Active sensing mechanism can be incorporated into estimation algorithm

Extensions

- Multiple agents: Reduce the amount of time needed to estimate field, both centralized and decentralized schemes
- Time-varying fields: Adapt approach of [Nemeth, Fearnhead, Mihaylova, 2014]

