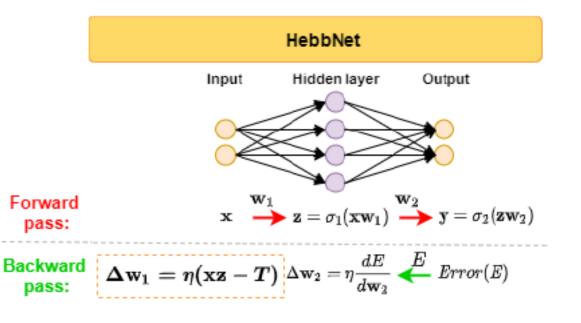
HebbNet: A Simplified Hebbian Learning Framework to do Biologically Plausible Learning

Manas Gupta, Arulmurugan Ambikapathi, Savitha Ramasamy Institute for Infocomm Research, A*STAR, Singapore

IEEE ICASSP 2021



What is Hebbian Learning?

- An algorithm for training neural networks
- Is biologically plausible
- Does not require any error or feedback to be backpropagated

Current algorithms are slow and complex

- State-of-the-art network from Krotov [1] uses a two-phase training regime
- The Hebbian layer is first trained for 1000 epochs then the SGD weights are trained for another 500 epochs
- Also requires 5 distinct hyper-parameters, on top of standard hyper-parameters
- ~12,600 runs required to find best combination of hyper-parameters

HebbNet simplifies this based on 2 simple rules

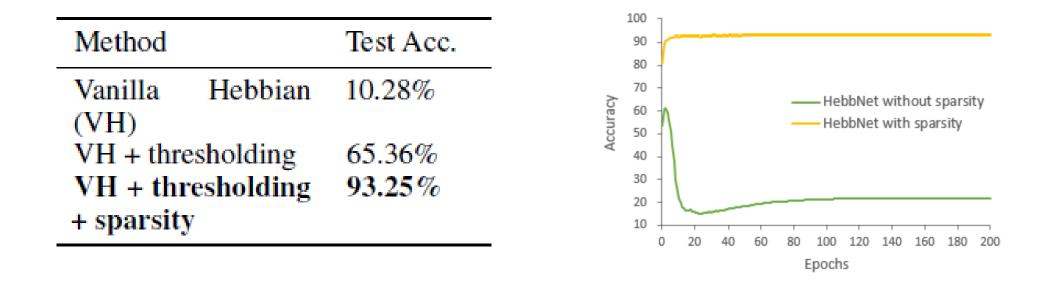
Vanilla Hebbian learning:

• Multiplies activations

$$\Delta w_{ij} = \eta x_i z_j \tag{1}$$

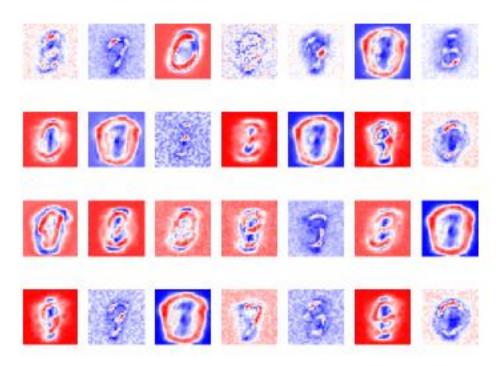
Activation thresholds:

• Thresholds the product


$$\Delta w_{ij}^{t} = \eta^{t} \begin{cases} x_{i}^{t} z_{j}^{t} & \text{if } t = 1 \\ x_{i}^{t} z_{j}^{t} - \frac{1}{t-1} \sum_{k=1}^{t-1} x_{i}^{k} z_{j}^{k} & \text{otherwise} \end{cases}$$
(2)

Gradient sparsity:

• Selectively update weights


$$\Delta \mathbf{w} = \begin{cases} \Delta w_l \mid \Delta w_l \in \Delta \mathbf{w} & \text{if } \Delta w_l \ge m \\ 0 & \text{otherwise} \end{cases}$$
(3)

The rules enable HebbNet to learn successfully

Ablations on key components of HebbNet on the MNIST dataset. Adding all the components together enables HebbNet to achieve high accuracy

HebbNet performs well on MNIST & CIFAR-10

Internal representations learnt by the Hebbian layer on MNIST. Showing a subset of 28 neurons. Red color indicates larger weights while blue indicates smaller weights. As can be seen, the neurons learn a range of different patterns. They learn both full patterns (digit 7 in row 1, column 2) and partial patterns (an arc in row 4, column 7). Hence, the Hebbian weights robustly learn pattern representation.

Method	Test Acc.	Epochs
Vanilla Hebbian	15.23%	200
Backprop (same hyper-params)	30.68%	200
Backprop (tuned hyper-params)	41.28%	200
Krotov and Hopfield, 2019	50.75%	1500
Amato et al., 2019	41.78%	20
HebbNet (Ours)	45.69%	200

Thank you

Please visit us at our Poster

Paper ID: 2462