

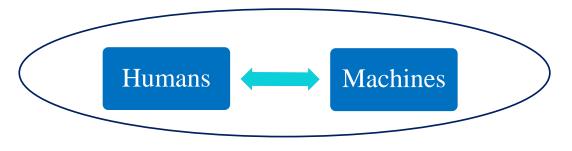
Building and Measuring Trust in Human-Machine Systems

Lida Ghaemi Dizaji, Yaoping Hu

Department of Electrical and Software Engineering University of Calgary, Calgary, AB, Canada

Outline

Introduction


Background

Method

Results and discussion

Conclusion

Introduction

Human-machine systems (HMS)

• Trust on HMS

Human engagement

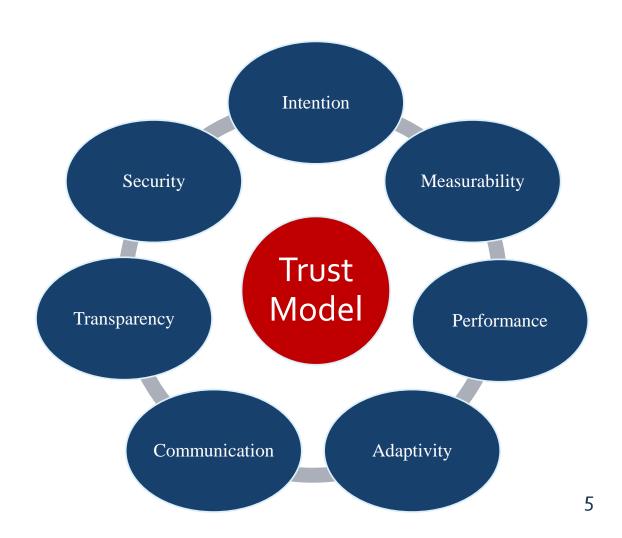
• Trust Uncertainty **U**

- IMPACTS model:
 - > Comprehensive
 - > Specific

Definitions of Trust

• Assured reliance on someone or something

• User's confidence on something


- In literature:
 - ➤ Human willingness → behavioral dependence [2]
 - ➤ Machine actions and behaviours ←→ human interest [3]
 - **>** ...

Modelling of Trust

• IMPACTS features:

- ➤ I → Intention
- ➤ M → Measurability
- ➤ P → Performance
- ➤ A → Adaptivity
- > C -> Communication
- > T -> Transparency
- \gt S \rightarrow Security

Trust Measurement

Measuring Trust

Quantitative

Predictability

Reliability

Qualitative

Dependability

Subjective

Objective

PRISMA [4]

> ScienceDirect

Databases

- > ACM Digital Library
- > IEEE Xplore
- Google Scholar

Keywords

- > "Trust"
 - > 2016 2021

Years

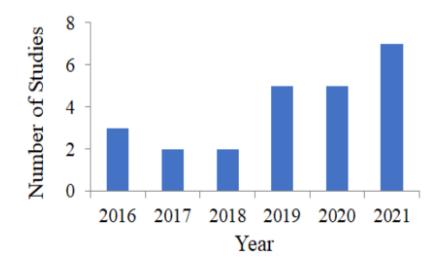
- > Title, abstract,

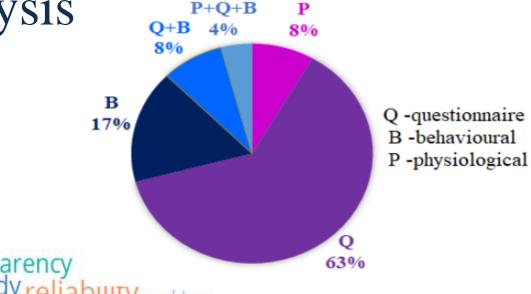
Inclusion criteria

nt of

- - > Reports

 - > Other languages


Results: 494 records


Selected studies: 24 records

Exclusion criteria

- > Reviews
- > Books
- > Thesis
- > Conference

Results: Quantitative Analysis

feedback study reliability making based human timesensing Online USE Control decision energy interactions performance role effects trust vehicle system machine collaboration measure management attention

Results: Qualitative Analysis

Study	Task	VR Simulation	I	M	P	A	C	T	S	Measurement
[26]	Operating machines - car	Yes	✓	✓	✓	X	✓	✓	-	Q
[24]	Operating machines - car	No	✓	✓	√	X	√	✓	-	Q
[20]	Operating machines - car	No	✓	✓	✓	✓	✓	✓	-	P
[21]	Operating machines - car	Yes	√	✓	√	✓	√	√	-	В
[15]	Operating machines - car	Yes	\checkmark	\checkmark	*	X	\checkmark	\checkmark	-	Q
[16]	Operating machines - aircraft	No	✓	✓	✓	X	\checkmark	\checkmark	-	Q
[17]	Operating machines - aircraft	No	\checkmark	\checkmark	*	X	\checkmark	\checkmark	-	Q
[27]	Operating machines - aircraft	No	✓	✓	✓	X	✓	✓	-	Q
[18]	Operating machines - aircraft	No	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	-	Q
[28]	Operating machines - aircraft	No	✓	✓	✓	X	✓	✓	-	Q
[29]	Operating machines - spacecraft	No	✓	✓	√	X	√	✓	-	Q
[22]	Operating machines - unmanned vehicles	No	✓	✓	✓	✓	✓	✓	-	Q+B
[30]	Classifying objects - product	No	✓	✓	*	X	✓	✓	-	В
[5]	Classifying objects - shapes/words	Yes	✓	✓	√	X	✓	✓	-	P+Q+B
[31]	Classifying objects - emails	No	✓	✓	✓	✓	✓	✓	-	Q
[32]	Classifying objects - buildings	No	√	√	√	✓	√	✓	-	В
[33]	Classifying objects - buildings	No	√	✓	√	✓	✓	√	-	В
[34]	Classifying objects - baggage	No	✓	✓	√	X	✓	✓	-	Q
[35]	Classifying objects - baggage	No	✓	✓	✓	X	✓	✓	-	Q
[23]	Classifying objects - cyber-attacks	No	✓	✓	√	X	✓	✓	✓	Q+B
[36]	Managing things - chat-bots	No	✓	✓	✓	X	✓	✓	-	Q
[37]	Managing things - resources	No	✓	✓	✓	✓	✓	✓	-	В
[38]	Managing things - inventory	No	✓	√	√	✓	√	√	-	Q
[39]	Managing things - spacecraft air quality	No	√	✓	√	X	√	√	-	Q

VR - virtual reality

IMPACTS

I – intention

M- measurability

P – performance

A – adaptivity

C – communication

T-transparency

S – security

Measurement

P - physiological

B - behavioural

Q - questionnaire

Discussion

- Research progress of trust in HMS, but:
 - > Inconsistent approach in measuring trust
 - > Needed objective measurements

• Comprehensive IMPACTS model → Building and investigating trust in HMS

Conclusion

Unique definition of human trust in HMS

Trend in studying trust in HMS

Bibliography

- [1] M. Hou et al., "Impacts: a trust model for human-autonomy teaming," Hum. Intell. Syst. Integr., pp. 1–19, 2021.
- [2] K. Gupta et al., "Measuring human trust in a virtual assistant using physiological sensing in virtual reality," in Proc. IEEEVR, 2020, pp. 756–765.
- [3] Z. R. Khavas et al., "Modeling trust in human-robot interaction: A survey," in Proc. ICSR, 2020, pp. 529–541.
- [4] Moher et al., "Preferred reporting items for systematic reviews and meta-analyses: the prisma statement," Int. J. Surg, vol. 8, pp. 336–341, 2010.

Thank you for your attention!

