

Towards Explainable Semantic Segmentation For Autonomous Driving Systems By Multi-Scale Variational Attention

Mohanad Abukmeil*, Angelo Genovese*, Vincenzo Piuri*, Francesco Rundo[‡], Fabio Scotti*

*Università degli Studi di Milano Department of Computer Science via Celoria 18, I-20133 Milano (MI), Italy <u>mohanad.abukmeil@unimi.it</u> [‡]STMicroelectronics ADG Central R&D, 95121 Catania (CT) <u>francesco.rundo@st.com</u>

IEEE ICAS 2021 August 11-13, 2021

Outline

- Explainable autonomous driving systems (EADS)
- Semantic image segmentation
- Related works
- Proposed explainable variational attention
- Experimental results
- Recent works comparison
- Conclusions

EADS

- In ADS, vehicles can sense the surrounding environment to perform driving tasks
 - Control engine
 - Visualize objects
 - Anomaly detection, etc.
- Driving tasks can be learned by MLs
 - Automatically processing data
 - Recognizing objects
 - Instantaneous recommendations
- Explainable artificial intelligence (XAI) explains the behaviors and decisions of the MLs

EADS and semantic segmentation

- EADS combine XAI and ADS to enhance the vehicular automation (VA)
 - o Interpreting sensory data
 - Mentoring vehicles behaviors
 - Semantically segmenting the ambient Objects
- In explainable semantic segmentation, each pixel holds a semantic meaning
 - Explains detected objects
 - Offers road conditions



Related semantic image segmentation works

- The success of AEs led to the flourishing of segmentation models
- Two main stages (blocks)

○ Encoder maps images to latent space $f: \mathbb{R}^D \to \mathbb{R}^d$, d < < D ○ Decoder reconstructs segmented masks $g: \mathbb{R}^d \to \mathbb{R}^D$

• All segmentation models optimize a similar objective

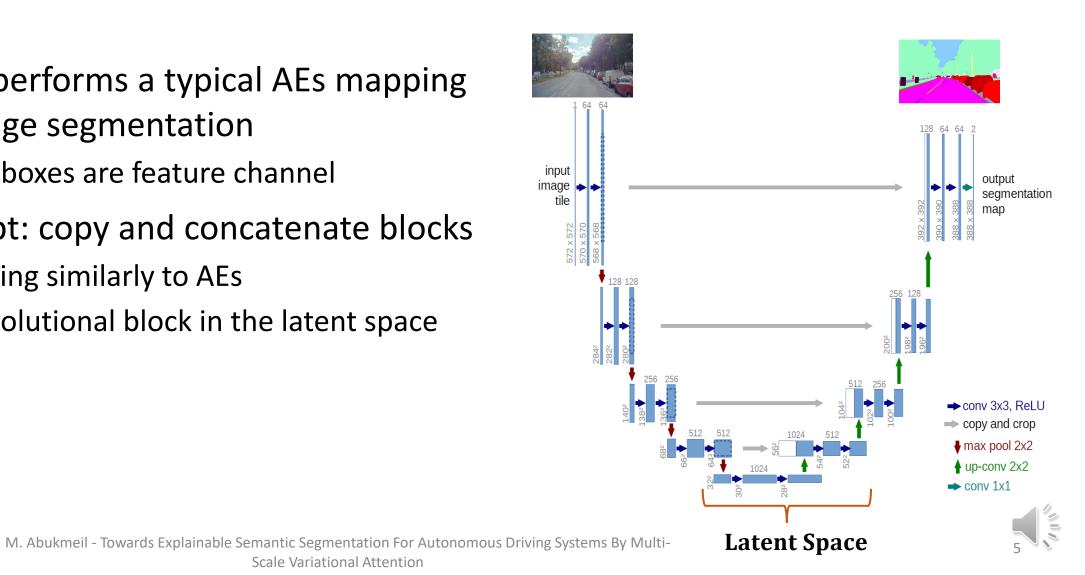
 \circ Irrespective of the error metric

$$\mathbf{L}_{\operatorname{rec}_{\{\hat{\theta}_{e}, \hat{\theta}_{d}\}}} = \min \|X - (f \circ g)X\|_{\operatorname{Er}}^{2}$$

GT mask Reconstructed mask

Related semantic segmentation works

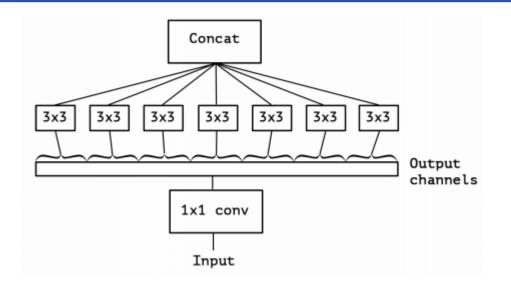
- **U-net** performs a typical AEs mapping for image segmentation • Blue boxes are feature channel
- Concept: copy and concatenate blocks • Training similarly to AEs
 - Convolutional block in the latent space



Related semantic segmentation works

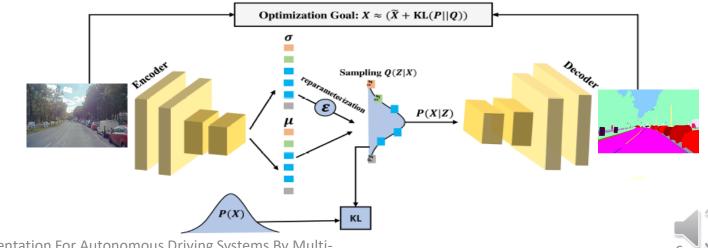
Xception-based U-Net

- $\,\circ\,$ Uses separable depth convolution
- \circ Utilizes residual learning X + f(X)
- $\,\circ\,$ Employs inception blocks for each layer



• Deep VAE

- $\,\circ\,$ It is regularized by VI
- \circ Optimizes two losses
- $\,\circ\,$ FCL layer in the latent space



IEEE ICAS 2021

M. Abukmeil - Towards Explainable Semantic Segmentation For Autonomous Driving Systems By Multi-Scale Variational Attention Proposes methodology (1/2)

- The performance of recent DL models is limited
 - Traditional optimization objective
 - Lack of the explainability
 - Architecture complexity
- Mgrad₂VAE: A novel variational segmentation model for EADs

 Regularized by VI
 - Uses the second-order partial derivative to build an attention map, $\frac{\partial^2 Z}{\partial L_i^2}$
 - Offers online (learnable attention) for each encoding layer
 - $\,\circ\,$ It is optimized based on VAE loss + attention loss simultaneously

Proposes methodology (2/2)

- The second-order partial derivative capture variation of the gradient
 - $\,\circ\,$ The variation reflects the curvature of the activation functions
 - $\,\circ\,$ Each latent neuron gives specific activation respecting the encoder layers

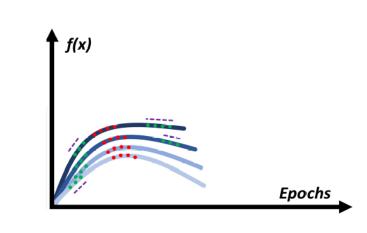
Scale₁:
$$\frac{\partial^2 Z}{\partial L_1^2}$$
,
Scale_l: $\frac{\partial^2 Z}{\partial L_l^2}$,

Aggregate all second-order partial derivative tensors

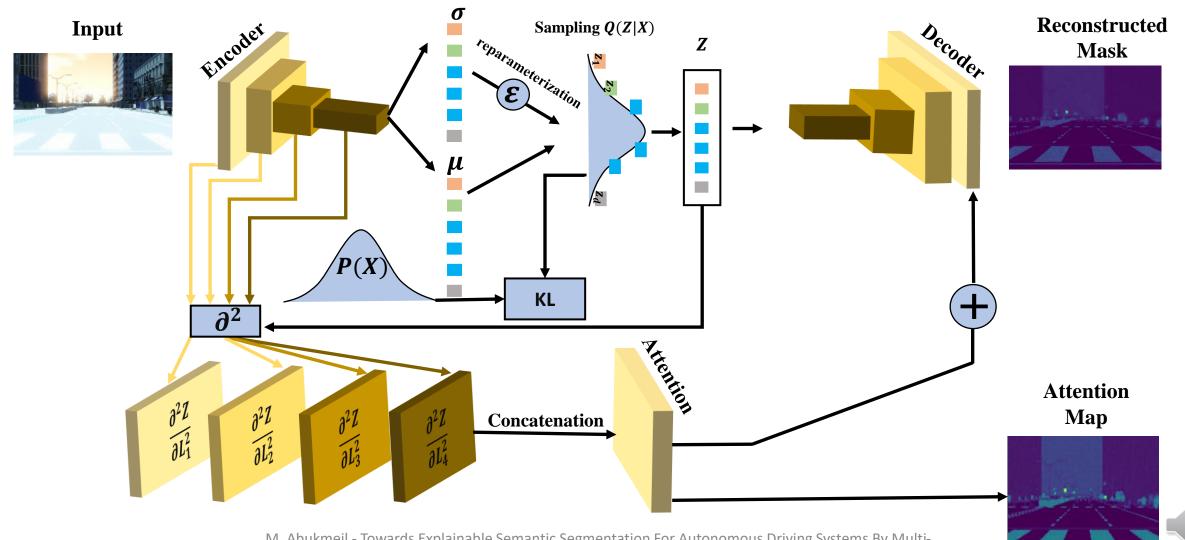
• Summation
$$(\sum_{i=1}^{l} \frac{\partial^2 Z}{\partial L_i^2})$$

• Average $(\frac{1}{l} \sum_{i=1}^{l} \frac{\partial^2 Z}{\partial L_i^2})$

Convolutional layer (Concat+Conv)



$Mgrad_2VAE$



M. Abukmeil - Towards Explainable Semantic Segmentation For Autonomous Driving Systems By Multi-Scale Variational Attention 110

Mgrad₂VAE optimization and performance evaluation

• DVAE loss: $\mathbf{L}_{\theta_{\text{VAE}}} = \min[\mathbf{L}_{\text{rec}} + \text{KL}(P \| Q)]$

• Mgrad₂VAE:
$$\mathbf{L}_{Mgrad_2VAE} = \min[\mathbf{L}_{VAE} + ||X - \theta_{Mgrad}(Z, L_{e_i})||_{Er}^2]$$

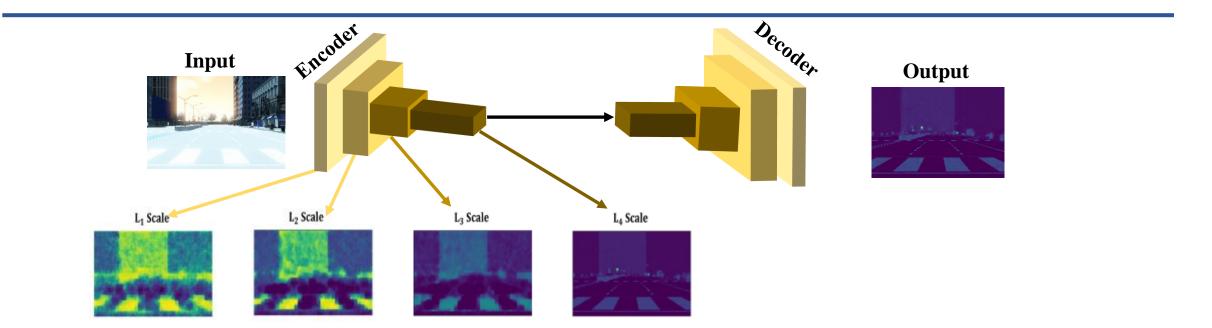
DVAE loss Attention loss

- SYNTHIA and A2D2 datasets have been considered
- Qualitative and Quantitative analysis used

 $\,\circ\,$ SSIM metric used in qualitative analysis

• AUC-ROC metric used in quantitative analysis

Mgrad₂VAE optimization and performance evaluation



• Final attention map

SSIM Index	SYNTHIA	A2D2
Reconstructed masks	97.57%	60.38%
Attention maps	96.47%	55.71%

- Pixel-wise predictive performance comparison with recent models
 - \odot Methods in the literature:

► DVAE

Xception model built based on the U-net architecture (transfer Learning)

\circ Proposed model: Mgrad₂VAE

AUC-ROC	SYNTHIA	A2D2
Deep VAE	79.60%	94.05%
Xception	67.43%	95.19%
Our Mgrad ₂ VAE reconstruction	$\mathbf{81.50\%}$	$\mathbf{95.44\%}$
Our Mgrad ₂ VAE attention	$\mathbf{83.20\%}$	95.36 %

Conclusions

- First ESS model for EADS
- Second-order derivative to capture the curvature of neuron activations

 An attention map for each encoding layer (multiscale)
- Online attention loss to improve the segmentation accuracy
 Based on the residual fusion between the attention and the reconstructed mask
- High performance
- In future works, we plan:
 - Investigate XAI potential in harsh environment
 - $\,\circ\,$ ESS under rough weather conditions

thank you

Mohanad Abukmeil

https://homes.di.unimi.it/abukmeil/

Mohanad.abukmeil@unimi.it

