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Motivation

A current goal of the self-driving vehicle industry is Level 4 autonomy, or complete 
autonomy in specific conditions (i.e. smooth, marked terrain).

https://unsplash.com/photos/PNsbZNIcS44



Motivation

Level 5 Autonomy

● Routes may include unmarked or unpaved 

terrain

It is crucial for autonomous vehicles to understand off-road terrain roughness.

Autonomous Ground Vehicles

● Designed to handle specific tasks [3]

● Search and rescue, mining [4, 5], planetary 

exploration [6]
https://unsplash.com/photos/nVVrRgkQy6s



This research

Dataset designed to enable autonomous vehicles to 
learn about off-road terrain using a single, 
monocular image

1

Eight roughness labeling schemas derived from 
IMU z-axis acceleration for labeling the images in 
the dataset

2



Challenges



Challenges

1 Lack of relevant off-road terrain data

2 Traversing rough off-road terrain can cause an unsteady camera

3
Labeling images with a single, quantitative measure of roughness 
derived from IMU z-axis acceleration readings is hard



Solution

● Collected an off-road 
terrain dataset

● Derived and evaluated 
eight roughness 
labeling schemas for 
the images in our 
dataset



Dataset



Data collection and preparation

Mountain bike 
with sensors

● Dual GPS receivers
● Dual high resolution IMU’s
● Camera synchronized to both accelerometers
● Strain-gauge based power meter
● Wheel rotation speed sensor

Percy Warner 
Park

● Nashville, TN
● Late July - early October 2020

In total, we collected 12,982 images covering nearly 44 miles of terrain

Data 
collected

● Video data
● Sensor data



Sample images



Sensor data

For each data collection session:

1. accelerometer_calibrated_split.csv: Calibrated and uncalibrated acceleration 
readings from the accelerometer

2. gyroscope_calibrated_split.csv: Calibrated and uncalibrated readings from 
the gyroscope

3. magnetometer_split.csv: Uncalibrated magnetometer readings
4. gps.csv: Latitude, longitude, altitude, speed, heading, velocity
5. record.csv: Latitude, longitude, distance traveled, speed, altitude
6. Roughness labeling CSVs: 8 potential roughness labels for each image



Roughness Labels



Roughness labels

https://unsplash.com/photos/htB7vJgJTRQ
https://unsplash.com/photos/0dhiDkRp-Wk

Terrain 
roughness

Vehicle camera view



Roughness 
Metric

Standard deviation of a 1-second 
sampling of z-axis acceleration 
readings.

● Describes entirety of terrain

● Accounts for cases where the 
mean is not 0



Labeling 
Images

● At what timestamp should this 
sampling be taken?

● How should we discretize this 
roughness metric?



At what timestamp should this sampling be taken?

Centered around 5 meters 
ahead of the imageTSM 1

Considered 2 Terrain Sampling Methods (TSMs):

5 m ahead

TSM 2

TSM 1

Directly ahead of the imageTSM 2



How should we discretize the roughness metric?

Original groups 4 discrete groups determined with data visualization

k = 2 groups k-means clustering with k = 2

k = 3 groups k-means clustering with k = 3

k = 4 groups k-means clustering with k =4



Labeling schemas
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Image validation

Visual Validation

● The image contained a clear, visible 

path

Sensor Validation

● There was sufficient data for 

labeling images

● This data met certain criteria

○ Continuity, nonzero speed, etc….



Method

1) Trained roughness classifiers 
for each of the 8 labels

2) Evaluated each on a selection 
set

3) Chose the two labeling 
schemas corresponding to the 
models with the best 
performance



Sample labeled images



Performance (selection set)



Selected labeling schemas evaluated on the test set

1 Label 6 (TSM 2, k = 2 groups)

2 Label 8 (TSM 2, k = 4 groups)

Overall accuracy: 69.91%

Average accuracy by class: 66.17%

Overall accuracy: 51.32%

Average accuracy by class: 34.73%



Chronological 
Split

● First 70% of each session: 
Training

● Next 15%: Validation
● Final 15%: Testing



Performance (on respective test sets)



Lessons Learned



Lessons 
Learned

● Data for off-road autonomous 
vehicles can be collected at 
scale by small, agile, and 
durable vehicles operated by 
humans

● We can learn about the future 
kinetics of the vehicle as a 
result of upcoming terrain 
roughness from a single, 
monocular image



Future Work



Future work

Expand geographic 
region for data 

collection

Roughness 
metric 

accounting for 
all visible 

terrain in an 
image

Collect data 
from other 
sensors or 

vehicles
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Thank you.



Questions


