An Off-Road Terrain Dataset Including Images Labeled with Measures of Terrain Roughness

Presenter: Gabriela Gresenz **Authors:** Gabriela Gresenz, Jules White, Douglas C. Schmidt

IEEE ICAS 2021

Motivation

A current goal of the self-driving vehicle industry is Level 4 autonomy, or complete autonomy in specific conditions (i.e. smooth, marked terrain).

Motivation

Level 5 Autonomy

• Routes may include unmarked or unpaved terrain

Autonomous Ground Vehicles

- Designed to handle specific tasks [3]
- Search and rescue, mining [4, 5], planetary exploration [6]

https://unsplash.com/photos/nVVrRgkQy6s

It is crucial for autonomous vehicles to understand off-road terrain roughness.

This research

Dataset designed to enable autonomous vehicles to learn about off-road terrain using a single, monocular image

Eight roughness labeling schemas derived from IMU z-axis acceleration for labeling the images in the dataset

Challenges

Traversing rough off-road terrain can cause an unsteady camera

2

3

Labeling images with a single, quantitative measure of roughness derived from IMU z-axis acceleration readings is hard

Solution

- Collected an off-road terrain dataset
- Derived and evaluated eight roughness labeling schemas for the images in our dataset

Data collection and preparation

Mountain bike with sensors	 Dual GPS receivers Dual high resolution IMU's Camera synchronized to both accelerometers Strain-gauge based power meter Wheel rotation speed sensor
Percy Warner Park	 Nashville, TN Late July - early October 2020
Data collected	Video dataSensor data

In total, we collected 12,982 images covering nearly 44 miles of terrain

Sample images

Sensor data

For each data collection session:

- 1. **accelerometer_calibrated_split.csv:** Calibrated and uncalibrated acceleration readings from the accelerometer
- 2. **gyroscope_calibrated_split.csv:** Calibrated and uncalibrated readings from the gyroscope
- 3. magnetometer_split.csv: Uncalibrated magnetometer readings
- 4. **gps.csv:** Latitude, longitude, altitude, speed, heading, velocity
- 5. **record.csv:** Latitude, longitude, distance traveled, speed, altitude
- 6. Roughness labeling CSVs: 8 potential roughness labels for each image

Roughness Labels

Roughness labels

Vehicle camera view

https://unsplash.com/photos/htB7vJgJTRQ https://unsplash.com/photos/0dhiDkRp-Wk Terrain roughness

Roughness Metric

Standard deviation of a **1-second sampling** of **z-axis acceleration** readings.

- Describes entirety of terrain
- Accounts for cases where the mean is not 0

Labeling Images

- At what timestamp should this sampling be taken?
- How should we discretize this roughness metric?

At what timestamp should this sampling be taken?

Considered 2 Terrain Sampling Methods (TSMs):

Centered around 5 meters ahead of the image

TSM 2 Directly ahead of the image

How should we discretize the roughness metric?

Original groups	4 discrete groups determined with data visualization		
k = 2 groups	k-means clustering with k = 2		
k = 3 groups	k-means clustering with k = 3		
k = 4 groups	k-means clustering with k =4		

Labeling schemas

Image validation

Sensor Validation

Visual Validation

- There was sufficient data for labeling images
- This data met certain criteria
 - Continuity, nonzero speed, etc....

- The image contained a clear, visible
 - path

Method

- 1) Trained **roughness classifiers** for each of the 8 labels
- 2) **Evaluated** each on a selection set
- 3) Chose the two labeling schemas corresponding to the models with the best performance

Sample labeled images

Performance (selection set)

	TSM 1		TSM 2	
	Overall accuracy	Avg class accuracy	Overall accuracy	Avg class accuracy
Original groups	34.75%	36.48%	45.48%	47.72%
k = 2 groups	71.19%	71.33%	73.45%	75.06%
k = 3 groups	55.65%	46.20%	60.17%	52.30%
k = 4 groups	45.76%	35.72%	50.00%	46.27%

Selected labeling schemas evaluated on the test set

Label 6 (TSM 2, k = 2 groups)

Overall accuracy: 69.91%

Average accuracy by class: 66.17%

Label 8 (TSM 2, k = 4 groups)

Overall accuracy: 51.32%

Average accuracy by class: 34.73%

Chronological Split

- First 70% of each session: Training
- Next 15%: Validation
- Final 15%: Testing

Performance (on respective test sets)

Labeling schema	Split	Overall accuracy	Avg class accuracy
Label 6	Random	69.91%	66.17%
Label 6	Chronological	70.19%	67.44%
Label 8	Random	51.32%	34.73%
Label 8	Chronological	52.92%	39.93%

Lessons Learned

Lessons Learned

- Data for off-road autonomous vehicles can be collected at scale by small, agile, and durable vehicles operated by humans
- We can learn about the future kinetics of the vehicle as a result of upcoming terrain roughness from a single, monocular image

Future Work

Future work

Expand geographic region for data collection Collect data from other sensors or vehicles Roughness metric accounting for all visible terrain in an image

Acknowledgments

We would like to thank Jiachen Xu, Shiliang Tian, and Acar Ary, who were the undergraduate researchers assisting with this project.

References

[1] Darrell Etherington, "Over 1,400 self-driving vehicles are now in testing by 80+ companies across the us," Jun 2019.

[2] NHTSA, "Automated vehicles for safety," Jun 2020, Available: https://www.nhtsa.gov/technology- innovation/automated-vehicles.

[3] S. George Fernandez, K. Vijayakumar, R Palanisamy, K. Selvakumar, D. Karthikeyan, D. Selvabharathi,

S. Vidyasagar, and V. Kalyanasundhram, "Unmanned and autonomous ground vehicle," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 9, no. 5, pp. 4466, 2019.

[4] Akhil Kurup, Sam Kysar, and Jeremy P. Bos, "SVM based sensor fusion for improved terrain classification," *Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2020*, 2020.

[5] Mingliang Mei, Ji Chang, Yuling Li, Zerui Li, Xiaochuan Li, and Wenjun Lv, "Comparative study of different methods in vibration-based terrain classification for wheeled robots with shock absorbers," *Sensors*, vol. 19, no. 5, pp. 1137, 2019.

[6] NASA, "Mars 2020 Perseverance Rover," 2020, Available: https://mars.nasa.gov/mars2020.

[7] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and Gary Bradski, "Self-supervised monocular road detection in desert terrain," *Robotics: Science and Systems II*, 2006.

[8] David Stavens and Sebastian Thrun, "A self-supervised terrain roughness estimator for off-road autonomous driving," arXiv:1206.6872, 2006.

[9] Vivekanandan Suryamurthy, Vignesh Sushrutha Raghavan, Arturo Laurenzi, Nikos G. Tsagarakis, and Dimitrios Kanoulas, "Terrain segmentation and roughness estimation using rgb data: Path planning application on the centauro robot," *2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)*, 2019.

[10] Yumi Iwashita, Kazuto Nakashima, Adrian Stoica, and Ryo Kurazume, "TU-Net and TDeepLab: Deep learning-based terrain classification robust to illumination changes, combining visible and thermal imagery," *2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)*, 2019.

[11] Christian Weiss, Hashem Tamimi, and Andreas Zell, "A combination of vision- and vibration-based terrain classification," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.

References (continued)

[12] Chengchao Bai, Jifeng Guo, and Hongxing Zheng, "Three-dimensional vibration-based terrain classification for mobile robots," *IEEE Access*, vol. 7, pp. 63485–63492, May 2019.

[13] Christian Weiss, Holger Frohlich, and Andreas Zell, "Vibration-based terrain classification using support vector machines," 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.

[14] Garmin Developers, "FitCSVTool," Available: https://developer.garmin.com/fit/fitcsvtool.

[15] Garmin Developers, "FIT protocol," Available: https://developer.garmin.com/fit/protocol.

[16] Shastri Ram, Semantic Segmentation for Terrain Roughness Estimation Using Data Autolabeled with a Custom Roughness Metric, Ph.D. thesis, Carnegie Mellon University, 2018.

[17] fastai, "fastai v1 documentation," Available: https://fastai1.fast.ai.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[19] fastai, "vision.transform," Available: https://fastai1.fast.ai/vision.transform.html#Data- augmentation.

