RIVER FLOW PATH CONTROL WITH REINFORCEMENT LEARNING

Dongqi LIU¹, Yutaka NAITO¹, Chen ZHANG¹, Shogo MURAMATSU² Hiroyasu YASUDA³, Kiyoshi HAYASAKA⁴, and Yu OTAKE⁵

¹Graduate School of Sci. & Tech., Niigata Univ., Japan,
 ²Faculty of Eng., Niigata Univ., Japan,
 ³Research Inst. for Natural Hazard & Disaster Recovery, Niigata Univ., Japan,
 ⁴Faculty of Sci., Niigata Univ., Japan, ⁵School of Eng., Tohoku Univ., Japan

Outline

(1) Introduction

- Background
- Artificial Variable-Width Channel
- Problem & Purpose

2 System concept

• River flow path control system

③ Proposed method

- Control with reinforcement learning
- Overview of reinforcement learning

4 Performance evaluation

- Simulation specifications
- Simulation results

5 Conclusion

• Summary and future task

Background

A frequent occurrence of river disasters cause economic loss and human victims

In Japan,

- The torrential rain in July, 2020
- Typhoon No.10 in Sept., 2020
- Typhoon Hagibis in Oct.,2019
- etc.
- One of the causes is the meandering due to changes in the flow path of the river channel

It is necessary to

- elucidate the mechanism of the flow path change
- > control the path changes in the river channel

IEEE ICAS 2021

Fig.1 Bank corruption of Otofuke River (Hokkaido, Japan) due to meandering in 2011 [1]

Artificial Variable-Width Channel (AVWC)

- Change the flow path channel by placing river groynes periodically
 AVWC maintains healthy riverbed
- ●Without groynes : ≻Meandering
- ●With groynes: >Straight

[2] T. Hoshino et al., Journal of Japan Society of Civil Engineers Ser.A2 (Applied Mechanics (AM)), 2018

Artificial Variable-Width Channel (AVWC)

 Both function of flood control and environmental protection of AVWC have been verified in real rivers [3]

[3] K. Umeki et al., Advances in River Engineering (in Japan), Jun.2021

IEEE ICAS 2021

Problem & Purpose

Problem :

- River groynes of conventional AVWC are **static**
- Difficult to find an optimized placement and shape due to unclear mechanisms of riverbed and flow path change
- Immediate measures are demanded

Purpose :

- Control river flow path channel dynamically
- > Maintain healthy rivers on a daily basis

11th August, 2021

River Flow Path Control System

- Build an autonomous system to control river groynes according to changes as needed in real rivers
 Build the system as a CPS for using less human
- resources
- The control method has not existed due to the unclear mechanisms

Control with Reinforcement Learning

- Propose to apply reinforcement learning as a control method
- Determine actions by reinforcement learning according to current coordinates and health index
- Conduct experiments with simulation and prototype system

IEEE ICAS 2021

Reinforcement Learning (RL) [4]

- One of machine learning methods
- "State", "Reward", "Action"
 Decide the optimal action based on the perceived state
 >e.g. AlphaGo, Autonomous car, etc.
- Double Deep Q-learning Network (DDQN) [5]
 An algorithm of RL based on the value of actions
 Use 2 networks of action-selecting network and valuecalculating network to learn more quickly and accurately
- To verify the effectiveness, modeled parts of the system and simulated
 - [4] K. Arulkumaran et al., *IEEE Signal Processing Magazine*, Nov.2017
 [5] H. van Hasselt et al., *30th AAAI Conference on Artificial Intelligence*, *2016*

Simulation Specifications

Fig.8 MATLAB/Simulink model of river flow path control system

Table1 Experiment specifications

Table2 Parameters of the DDQN model

OS	Ubuntu 18.04 LTS	Discount Factor γ	0.9	
Env.	MATLAB/Simulink R2020b	Learning Rate	0.001	
Toolbox 1	Reinforcement Learning Toolbox	Maximum Number of Episode	2500	
Toolbox 2	Deep Learning Toolbox	Maximum Steps per Episode	20	MSIPLab

Definition of Health Index

• The health of a river flow path is defined by a variety of factors

- e.g. water level, meandering, flow rate, etc.
- A health index of real river flow path is being studied through experiments
- In this study, defined the health index by the ratio of the river soil area in the entire image in terms of preventing erosion to the embankment

Reinforcement Learning Model

^{*}Fig.10 RL model of river flow path control system model

- Combine the coordinates and the health index as a signal of observation
- Input the change of the health index as a reward of actions
- Send a logical decision of the operating range to "isdone"
- Determine actions and send a signal to "Actuator" block

D. Liu et al. (Niigata Univ., Japan)

IEEE ICAS 2021

MSIPLab

Simulation Result with River Images

Image size : 800x200 pixels (Similar to the indoor experiment setup) Meander cycle : 400, 600 and 800 pixels

For meander image of cycle 400 pixels :

- Learning curve converged to almost highest value 0
- The health index changed from 0.848 to 0.899
- Groynes moved to configured optimal placement
- □ Learning curve oscillated on the last part

IEEE ICAS 2021

Simulation Result with River Images

Common features :

- Learning curve converged to a high value
- The health index increased by the movements

Differences :

- The longer the meandering period changed, the more difficultly the RL model learned
- River CPS with reinforcement learning is effective

Summary and Future Task

- Created a simulation model of River CPS
- Verified the effectiveness of the river flow control system with reinforcement learning

In future,

- Conduct experiment on prototype system
- Update simulation model to learn on dynamic river flow simulation
- > Control and maintain rivers dynamically

This study was supported by JSPS KAKENHI Grant Numbers 20K20543, JP19K22026, JP19H04135

11th August, 2021

D. Liu et al. (Niigata Univ., Japan)

IEEE ICAS 2021