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Introduction ' Background

Background

B A frequent occurrence of river disasters cause
economic loss and human victims

In Japan,
* The torrential rain in July, 2020
* Typhoon No0.10 in Sept., 2020
» Typhoon Hagibis in Oct.,2019
* eftc.

€ One of the causes is the meandering due to
changes in the flow path of the river channel

It IS necessary to Fig.1 Bank corruption of
» elucidate the mechanism of the flow path change Otofuke River (Hokkaido, Japan)
> control the path changes in the river channel due to meandering in 2011 [1]
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[1] T. Kuwamura et al., Advances in River Engineering (in Japan) , Jun.2016
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Introduction Artificial Variable-Width Channel

Artificial Variable-Width Channel (AVWC)

B Change the flow path channel by
placing river groynes periodically 211K

B AVWC maintains healthy riverbed

®\Vithout groynes : )| (4
»Meandering

®\\ith groynes: | pEt N
>Straig ht 4 groynes Without groynes With groynes

Fig.2 AVWC Fig.3 Experiments of AVWC using the
Indoor experiment setup [2]
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[2] T. Hoshino et al., Journal of Japan Society of Civil Engineers Ser.A2 (Applied Mechanics (AM)) , 2018
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Introduction Artificial Variable-Width Channel

Artificial Variable-Width Channel (AVW(C)

® Both function of flood control and
environmental protection of AVWC
have been verified in real rivers [3]

The original picture was provided by MILT of Japan

Fig.4 AVWC for real rivers

[3] K. Umeki et al., Advances in River Engineering (in Japan) , Jun.2021
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Introduction Problem & Purpose

Problem & Purpose

Problem :
B River groynes of conventional AVWC are static

B Difficult to find an optimized placement and shape due to unclear
mechanisms of riverbed and flow path change

B Immediate measures are demanded

Purpose :
» Control river flow path channel dynamically
» Maintain healthy rivers on a daily basis
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System concept River flow path control system

River Flow Path Control System

Build an autonomous system
to control river groynes
according to changes as
needed in real rivers

B Build the system as a CPS
for using less human

Virtual

hem
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o o

coordinates

Fesources
Server
0 The control method has not
existed due to the unclear
mechanisms Fig.5 Concept river flow path control system ’
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Proposed method Control with reinforcement learning

Control with Reinforcement Learning

€ Propose to apply Sensor_
reinforcement learning as a s Y Virtual
control method 11m

€ Determine actions by l

reinforcement learning
according to current
coordinates and health
iIndex
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Proposed method Overview of reinforcement learning

Reinforcement Learning (RL) [4]

® One of machine learning methods

® “State”, "Reward”, “Action”

» Decide the optimal action based on the perceived state
»e.g. AlphaGo, Autonomous car, etc.

3 -
: '-J.”'«O:
- ..
3

® Double Deep Q-learning Network (DDQN) [5] :m =3
-y .

> An algorithm of RL based on the value of actions i"""—‘

»Use 2 networks of action-selecting network and value- Fig.7 AlphaGo
calculating network to learn more quickly and accurately

» To verify the effectiveness, modeled parts of the
system and simulated

[4] K. Arulkumaran et al., IEEE Signal Processing Magazine, Nov.2017
[5] H. van Hasselt et al., 301" AAAI Conference on Artificial Intelligence, 2016
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Performance evaluation Simulation specifications

Simulation Specifications

——P» Action L Error
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Fig.8 MATLAB/Simulink model of river flow path control system

Tablel Experiment specifications Table2 Parameters of the DDQN model
(ON) Ubuntu 18.04 LTS Discount Factor y 0.9
Env. MATLAB/Simulink R2020b Learning Rate 0.001
Toolbox 1 Reinforcement Learning Toolbox Maximum Number of Episode 2500 l
Toolbox 2 Deep Learning Toolbox Maximum Steps per Episode 20 M,'SéI!E"I%ab
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Performance evaluation Simulation specifications

Definition of Health Index

® The health of a river flow path is defined by a variety of factors
« e.g. water level, meandering, flow rate, etc.

® A health index of real river flow path is being studied through
experiments

€ In this study, defined the health index by the ratio of the river soil
area In the entire image in terms of preventing erosion to the
embankment

Groynes movement

B river soil area |: groynes [: river area
Fig.9 Definition of the health index for simulation
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Performance evaluation Simulation specifications

Reinforcement Learning Model
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ig.10 RL model of river flow path control system model

« Combine the coordinates and the health index as a signal of observation
 Input the change of the health index as a reward of actions
« Send a logical decision of the operating range to “isdone”

« Determine actions and send a signal to “Actuator” block
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Performance evaluation Simulation results

Simulation Result with River Images

Curve for 400 cycle with rIDQNAgent

6
5.
Image size : 800x200 pixels 54,
(Similar to the indoor experiment setup) % 2l | “
Meander cycle : 400, 600 and 800 pixels R ‘
|

For meander image of cycle 400 pixels : " ATTE [ ~Episode Reward
“H : dt | t highest | 0 RuliWl ~Average Reward

earning curve converged to almost highest value ° " 555 1000 1500 2000 2500
B The health index changed from 0.848 to 0.899 Episode Number

B Groynes moved to configured optimal placement
O Learning curve oscillated on the last part

Fig.11 Result of river image with
meander cycle 400 pixels M:SiI!P’]?ab
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Performance evaluation Simulation results

Simulation Result with River Images

Curve for 400 cycle with rIDQNAgent

Common features :
B | earning curve converged to a high value 27 1l

B The health index increased by the movements 3 il

Differences : s,
O The longer the meandering period changed, |
the more difficultly the RL model learned LT

~Episode Reward
—Average Reward

» River CPS with reinforcement learning is effective T

Episode Number
Fig.12 Comparison of learning curves
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Conclusion Summary and future task

Summary and Future Task

B Created a simulation model of River CPS

B Verified the effectiveness of the river flow
control system with reinforcement learning

In future, “

» Conduct experiment on prototype system

» Update simulation model to learn on
dynamic river flow simulation

» Control and maintain rivers dynamically

This study was supported by JSPS KAKENHI Grant Numbers
20K20543, JP19K22026, JP19H04135
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