

Real-Time Learning for THz Radar Mapping and UAV Control

A. Guerra^{*}, F. Guidi[◊], D. Dardari^{*}, P. M. Djurić[†]

* University of Bologna, UNIBO, Italy

[◊] National Research Council, CNR-IEIIT, Italy

[†] Stony Brook University, SBU, USA

Email: anna.guerra3@unibo.it

ICAS 2021 - IEEE Conference on Autonomous Systems.

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

Why UAVs

◊ Advantages

- Flying sensors able to offer a privileged point-of-view for sensing;
- Autonomous, flexible, and quick to react;
- Able to access impervious or dangerous areas (e.g., mountains, oceans, etc.)

◊ Disadvantages

- Battery constrained;
- Lightweight and low-cost on-board sensors;
- Ethical issues when used with AI.

Possible Applications

Research Motivations

◊ Problem Formulation

- Environment Mapping & Target Detection with UAVs
- Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

UAV for Detection and Mapping

Given a fixed maximum time to complete the mission,

- \mathcal{G}_1 : Detection: maximize the probability of detection;
- \mathcal{G}_2 : *Mapping*: maximize the mapping coverage and accuracy.

State Estimator: GLRT for Target Detection and Occupancy grid mapping;

Control: Q-learning.

UAV for Detection and Mapping

Given a fixed maximum time to complete the mission,

- \mathcal{G}_1 : Detection: maximize the probability of detection;
- \mathcal{G}_2 : *Mapping*: maximize the mapping coverage and accuracy.

□ State Estimator: GLRT for Target Detection and Occupancy grid mapping;

Control: Q-learning.

Anna Guerra

Recall on Markov Decision Processes (MDPs)

- In time-critical applications, models for navigation are often not available
- UAVs have to learn from the environment (trial and error);
- Interaction UAV-environment represented with Markov Decision Processes

Recall on MDPs - Cont'd

◊ State Space

□ The state vector is s^(k) = [p^(k), m^(k), t^(k)]^T
 □ p^(k) = [x^(k), y^(k), h] is the UAV position, that can be varied by the actions;
 □ t^(k) ∈ B² indicates the presence or absence of a target, estimated by a detection module. In the next, t^(k) = t = 1.
 □ m^(k) = m = [m₁,...,m_i,...,m_{N_{cell}}]^T ∈ B<sup>N_{cell} is a map of the environment, estimated by the mapping module.
</sup>

Recall on MDPs - Cont'd

◊ Action Space

- □ The UAV action is defined as $\mathbf{a}_k = \Delta \mathbf{p}_k = [\Delta x_k, \Delta y_k]^\mathsf{T} \in \mathbb{R}^2$ in terms of position displacement $\Delta \mathbf{p}_k$;
- \square $\mathbf{p}_{k+1} = \mathbf{p}_k + \mathbf{a}_k$: Next UAV position;

 $\Box \Delta \mathbf{p}_k$ is set according to $N_a = 4$ actions;

$$\mathcal{A} = \left\{ \underbrace{[\Delta, 0]}_{\mathsf{Right}}, \underbrace{[-\Delta, 0]}_{\mathsf{Left}}, \underbrace{[0, \Delta]}_{\mathsf{Up}}, \underbrace{[0, -\Delta]}_{\mathsf{Down}} \right\}.$$

Recall on MDPs - Cont'd

Reward Space

- \Box r_{k+1} : Reward at k+1 related to the action \mathbf{a}_k and the current state \mathbf{s}_k ;
- \Box r_{task} : Extrinsic/Task reward \rightarrow detection;
- \Box r_{int} : Intrinsic reward \rightarrow mapping;
- $\exists \eta$: Normalizing factor;

$$r_{k+1} = \underbrace{r_{\mathrm{i}, k+1}}_{\text{Intrinsic reward}} + \eta \underbrace{r_{\mathrm{e}, k+1}}_{\text{Extrinsic Reward}},$$

- □ $r_{i,k+1} = r_{c,k+1} + r_{m,k+1}$ is an intrinsic reward used for obtaining a sufficient knowledge of the surrounding environment;
 - □ $r_{e,k+1} = r_{d,k+1}$ is a reward for the considered unmanned aerial vehicle (UAV) task.

Reward Shaping

Intrinsic Reward: Detection Rate;

$$r_{\det,k} \triangleq f_D(\sqrt{\lambda_k}, \sqrt{\xi}),$$

 $\Box f_D(\cdot) \text{ is a specific function depending on the particular detector statistic}$ $<math display="block">\Box \lambda_k \text{ is the measured signal-to-noise ratio (SNR) at time instant } k$ $<math display="block">\Box \xi \text{ is a threshold depending on the } P_{\text{FA}}^*.$

Extrinsic Reward: Map entropy and coverage;

$$r_{\max,k} \triangleq \frac{H_{k+1|k}(\mathbf{m})}{|\mathcal{I}_k|} \qquad \qquad r_{\operatorname{cov},k} \triangleq \frac{1}{N_{\operatorname{cells}}} \sum_{i \in \mathcal{I}_k} 1(i \in \mathcal{D}_k)$$

 $\Box H(\mathbf{m}) = -\sum_{i \in \mathcal{I}} b(m_i) \log_2(b(m_i)) \text{ is the map entropy}$ $\Box \mathcal{I}_k \text{ set of illuminated cells at time instant } k$ $\Box \mathcal{D}_k \text{ set of illuminated cells seen for the first timeat time instant }.$

Reward Shaping

Intrinsic Reward: Detection Rate;

$$r_{\det,k} \triangleq f_D(\sqrt{\lambda_k}, \sqrt{\xi}),$$

 $\Box f_D(\cdot) \text{ is a specific function depending on the particular detector statistic} \\ \Box \lambda_k \text{ is the measured SNR at time instant } k \\ \Box \xi \text{ is a threshold depending on the } P_{\mathsf{FA}}^{\star}.$

Extrinsic Reward: Map entropy and coverage;

$$r_{\mathsf{map},k} \triangleq \frac{H_{k+1|k}(\mathbf{m})}{|\mathcal{I}_k|} \qquad \qquad r_{\mathsf{cov},k} \triangleq \frac{1}{N_{\mathsf{cells}}} \sum_{i \in \mathcal{I}_k} \mathbf{1}(i \in \mathcal{D}_k)$$

 $\Box \ H(\mathbf{m}) = -\sum_{i \in \mathcal{I}} b(m_i) \ \log_2(b(m_i)) \text{ is the map entropy}$ $\Box \ \mathcal{I}_k \text{ set of illuminated cells at time instant } k$ $\Box \ \mathcal{D}_k \text{ set of illuminated cells seen for the first timeat time instant } k.$

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

State Estimator

- ◊ Terahertz Radar at 140 GHz [1];
- 100 virtual antennas;
- Capability to operate in scarce visibility conditions;
- Output: range-angle matrix;

Ju, Shihao, et al. "Scattering mechanisms and modeling for terahertz wireless communications." ICC 2019-2019. IEEE, 2019.

Anna Guerra RL for UAVs	ICAS, August, 2021	7 / 15
-------------------------	--------------------	--------

UAV-Radar Mapping

- Goal: A UAV equipped with a MIMO radar explores an unknown environment and estimate a map of it;
- Interrogation Phase: For each steering direction, a train of pulses is transmitted;
- Measurement Phase: Backscattered energy measurements are accumulated in a Range-Angle matrix;
- Estimation Phase: From the Range-Angle matrix, the map is estimated using an OG algorithm.

Anna Guerra

UAV-Radar Mapping - Observations

- \diamond Scanning operation with $N_{\rm steer}$ beamsteering angles θ_b .
- $\diamond\,$ Measurements: range-angle matrix ${\bf e}^{(k)}$ containing the accumulated measured energy at a certain time instant k

$$\mathbf{e}^{(k)} = \begin{bmatrix} e_{11} & e_{21} & \dots & e_{b1} & \dots & e_{N_{\text{steer}}1} \\ e_{12} & e_{22} & \dots & e_{b2} & \dots & e_{N_{\text{steer}}2} \\ \vdots & & & & & \\ e_{1s} & e_{2s} & \dots & e_{bs} & \dots & e_{N_{\text{steer}}s} \\ \vdots & & & & & \\ e_{1N_{\text{bins}}} & e_{2N_{\text{bins}}} & \dots & e_{bN_{\text{bins}}} & \dots & e_{N_{\text{steer}}N_{\text{bins}}} \end{bmatrix}$$

- ♦ Statistical observation model: the measurement model at the radar is $\mathbf{z}^{(k)} = \mathbf{g}(\mathbf{m}) + \mathcal{N}\left(0, \mathbf{R}^{(k)}\right)$
 - ▶ $\mathbf{g}(\mathbf{m}) = [g_{11}(\mathbf{m}), \dots, g_{bs}(\mathbf{m}), \dots, g_{N_{\text{steer}}N_{\text{bins}}}(\mathbf{m})], g_{bs}(\mathbf{m})$: radar range equation accounting for THz scattering model [1];
 - $\mathbf{R}^{(k)}$ is the covariance diagonal matrix whose generic element is given by σ^2_{bs}

UAV-Radar Mapping - Occupancy Grid

Bayesian algorithm in three main steps using the following log-odd notation

$$\ell_{i}^{(k)}\left(m_{i}^{(k)}\right) \triangleq \log\left(\frac{p\left(m_{i}^{(k)} = 1 | \mathbf{z}^{(1:k)}\right)}{p\left(m_{i}^{(k)} = 0 | \mathbf{z}^{(1:k)}\right)}\right) = \log\left(\frac{p\left(m_{i}^{(k)} = 1 | \mathbf{z}^{(1:k)}\right)}{1 - p\left(m_{i}^{(k)} = 1 | \mathbf{z}^{(1:k)}\right)}\right)$$

- ♦ Initialization The map is initialized with $p(m_i^{(k)} = 1 | \mathbf{z}^{(1:k)}) = p(m_i^{(k)} = 0 | \mathbf{z}^{(1:k)}) = 0.5$ (complete uncertainty);
- ♦ Measurement update A new energy matrix is collected for each steering direction and time bin. The likelihood functions $p(\mathbf{z}^{(k)}|m_i = 1)$ and $p(\mathbf{z}^{(k)}|m_i = 0)$ are computed.
- Log-odd update the belief of the map is updated according to

$$\ell_k(m_i) = \log\left(\frac{p\left(\mathbf{z}^{(k)}|m_i\right)}{1 - p\left(\mathbf{z}^{(k)}|m_i\right)}\right) + \ell_{k-1}(m_i).$$

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

Model-free RL for UAV Control

- Tabular Policies: with discrete (few) number of actions and states, the policy can be represented as a table;
- With a Q-table, the policy is to check the value of every possible action given the current state and then choose the action with the highest value;

Q-Learning

Algorithm 1: Q-Learning Navigation for a Single Episode

```
Parameters: Set the learning parameters (\gamma, \alpha, \epsilon) and the mission time T_{M};
Initialization: Initialize the Q-table to zeros and the initial state s_0;
while k < T_M do
      Generate a random value \epsilon_k;
     if \epsilon_k < \epsilon then
            Choose a random action \mathbf{a}_k \in \mathcal{A}:
      else
            Choose the action \mathbf{a}_k \in \mathcal{A} that corresponds to the maximum Q-value in
             Q(\mathbf{s}_k, :):
      end
      UAV moves to the new state, collects the reward r_{k+1} and updates the Q-table
        according to
                Q(\mathbf{s}_k, \mathbf{a}_k) \leftarrow Q(\mathbf{s}_k, \mathbf{a}_k) + \alpha \left[ r_{k+1} + \gamma \max Q(\mathbf{s}_{k+1}, \mathbf{a}) - Q(\mathbf{s}_k, \mathbf{a}_k) \right]
```

end

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- ◊ Simulation Results
- ◊ Take-aways

Simulation Results

Examples of estimated trajectories and maps for e = 1 (left) and e = 20 (right). Blue and red markers indicate the initial UAV and the target position, respectively.

	_		
1.00		0.5	

Simulation Results - Cont.'d.

- Research Motivations
- Problem Formulation
 - Environment Mapping & Target Detection with UAVs
 - Recall on Markov Decision Processes
- State Estimator: Occupancy Grid Mapping
- ◊ Policy Estimator: Off-policy Q-Learning
- Simulation Results
- ◊ Take-aways

Conclusions

- UAVs are a promising technology to realize dynamic wireless sensor/radar networks;
- UAVs can be intelligent: optimizing their trajectory according to the assigned tasks;
- ◊ Q-learning approach with a combination of intrinsic and extrinsic rewards for target detection and environment mapping;
- Mapping aided by on-board THz radar allows for an enhanced ambient awareness;
- Next Steps: Distributed multi-agent learning for multi-target detection with large networks of UAVs.

Thank you

Anna Guerra

UAV-Radar Mapping - Observation Model, Cont'd

$$\diamond$$
 Measurement model: $\mathbf{z}^{\left(k
ight)}=\mathbf{g}\left(\mathbf{m}
ight)+\mathcal{N}\left(0,\mathbf{R}^{\left(k
ight)}
ight)$

 \diamond The generic element $g_{bs}\left(\mathbf{m}
ight)$ is given by the radar range equation as

$$g_{bs}(\mathbf{m}) = \sigma^{2} T_{\rm ED} N_{\rm p} + T_{\rm f} \sum_{i \in \mathcal{R}(s)} \frac{P_{t} c^{2} \rho_{i}^{2} G^{2} N_{\rm p}}{f^{2} (4\pi)^{3} d_{i}^{4}}$$

- \Box $T_{
 m ED} pprox 1/W$ is the duration of a bin
- \Box $T_{\rm f}$ is the duration of a time frame
- $\square \ \mathcal{R}(s)$ is the number of cell located at a distance d_i
- \Box P_t is the transmitted power
- $\square \rho_i^2$ is the radar cross section
- \Box G is the radar antenna gain
- \Box d_i is the distance
- $\hfill\square\hfill$ $N_{\rm p}$ is the number of transmitted pulses
- $\Box \sigma^2 = N_0 W$ is the noise variance