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Why UAVs

⋄ Advantages

◮ Flying sensors able to offer a privileged point-of-view for sensing;

◮ Autonomous, flexible, and quick to react;

◮ Able to access impervious or dangerous areas (e.g., mountains, oceans,
etc.)

⋄ Disadvantages

◮ Battery constrained;

◮ Lightweight and low-cost on-board sensors;

◮ Ethical issues when used with AI.
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Possible Applications
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UAV for Detection and Mapping
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Given a fixed maximum time to complete the mission,

G1: Detection: maximize the probability of detection;

G2: Mapping : maximize the mapping coverage and accuracy.

� State Estimator: GLRT for Target Detection and Occupancy grid mapping;

� Control: Q-learning.
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Recall on Markov Decision Processes (MDPs)

In time-critical applications, models for navigation are often not available

UAVs have to learn from the environment (trial and error);

Interaction UAV-environment represented with Markov Decision Processes

Environment

Not variable

with actions

with actions

Variable

Target Detection
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Reinforcement Learning
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ActionFeedback

Observations

State Policy

Estimator Estimator
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Recall on MDPs - Cont’d

⋄ State Space

� The state vector is s(k) =
[

p
(k), m(k), t(k)

]T

� p
(k) =

[

x(k), y(k), h
]

is the UAV position, that can be varied by the actions;

� t(k) ∈ B
2 indicates the presence or absence of a target, estimated by a

detection module. In the next, t(k) = t = 1.

� m
(k) = m = [m1, . . . ,mi, . . . ,mNcell

]
T
∈ B

Ncell is a map of the environment,

estimated by the mapping module.

mi = 1

m1

mNcell

mi = 0

0
0

10

10

UAV

Trajectory

Obst.
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Recall on MDPs - Cont’d

⋄ Action Space

� The UAV action is defined as ak = ∆pk = [∆xk,∆yk]
T
∈ R

2 in terms of

position displacement ∆pk;

� pk+1 = pk + ak: Next UAV position;

� ∆pk is set according to Na = 4 actions;

A =
{

[∆, 0]
︸ ︷︷ ︸

Right

, [−∆, 0]
︸ ︷︷ ︸

Left

, [0, ∆]
︸ ︷︷ ︸

Up

, [0, −∆]
︸ ︷︷ ︸

Down

}

.
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Recall on MDPs - Cont’d

⋄ Reward Space

� rk+1: Reward at k + 1 related to the action ak and the current state sk;

� rtask: Extrinsic/Task reward → detection;

� rint: Intrinsic reward → mapping;

� η: Normalizing factor;

rk+1 = ri, k+1
︸ ︷︷ ︸

Intrinsic reward

+η re, k+1
︸ ︷︷ ︸

Extrinsic Reward

,

� ri, k+1 = rc,k+1 + rm,k+1 is an intrinsic reward used for obtaining a sufficient

knowledge of the surrounding environment;

� re, k+1 = rd,k+1 is a reward for the considered unmanned aerial

vehicle (UAV) task.
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Reward Shaping

⋄ Intrinsic Reward: Detection Rate;

rdet,k , fD(
√

λk,
√

ξ),

� fD (·) is a specific function depending on the particular detector statistic
� λk is the measured signal-to-noise ratio (SNR) at time instant k
� ξ is a threshold depending on the P ⋆

FA.

⋄ Extrinsic Reward: Map entropy and coverage;

rmap,k ,
Hk+1|k(m)

|Ik|
rcov,k ,

1

Ncells

∑

i∈Ik

1(i ∈ Dk)

� H(m) = −
∑

i∈I

b(mi) log2 (b(mi)) is the map entropy

� Ik set of illuminated cells at time instant k
� Dk set of illuminated cells seen for the first timeat time instant k.
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State Estimator

Interrogation Signal

Received Signal

Backscattered Signal

m̂k

t̂k

Radar

(TX/RX)

Receiver

(RX)

Mapping module

Detection module

Energy matrix, ek

Estimated state

Occupancy G.

Algorithm

GLRT

Energy Det.

Signal samples, yk

⋄ Terahertz Radar at 140 GHz [1];

⋄ 100 virtual antennas;

⋄ Capability to operate in scarce visibility

conditions;

⋄ Output: range-angle matrix;

Ju, Shihao, et al. “Scattering mechanisms and modeling for terahertz wireless communications.” ICC 2019-2019. IEEE, 2019.
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UAV-Radar Mapping

11 NbinsNbins

⋄ Goal: A UAV equipped with a MIMO radar explores an unknown environment and
estimate a map of it;

⋄ Interrogation Phase: For each steering direction, a train of pulses is transmitted;

⋄ Measurement Phase: Backscattered energy measurements are accumulated in a
Range-Angle matrix;

⋄ Estimation Phase: From the Range-Angle matrix, the map is estimated using an
OG algorithm.
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UAV-Radar Mapping - Observations

⋄ Scanning operation with Nsteer beamsteering angles θb.

⋄ Measurements: range-angle matrix e
(k) containing the accumulated measured

energy at a certain time instant k

e
(k)

=



























e11 e21 . . . eb1 . . . eNsteer1
e12 e22 . . . eb2 . . . eNsteer2

.

.

.

e1s e2s . . . ebs . . . eNsteers

.

.

.

e1Nbins
e2Nbins

. . . ebNbins
. . . eNsteerNbins



























⋄ Statistical observation model: the measurement model at the radar is

z
(k) = g (m) +N

(

0,R(k)
)

◮ g (m) = [g11 (m) , . . . , gbs (m) , . . . , gNsteerNbins
(m)], gbs (m): radar range

equation accounting for THz scattering model [1];

◮ R
(k) is the covariance diagonal matrix whose generic element is given by σ2

bs
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UAV-Radar Mapping - Occupancy Grid

⋄ Bayesian algorithm in three main steps using the following log-odd notation

ℓ
(k)
i

(

m
(k)
i

)

, log





p
(

m
(k)
i

= 1|z(1:k)
)

p
(

m
(k)
i

= 0|z(1:k)
)



 = log





p
(

m
(k)
i

= 1|z(1:k)
)

1 − p
(

m
(k)
i

= 1|z(1:k)
)





⋄ Initialization The map is initialized with p
(

m
(k)
i

= 1|z
(1:k)

)

=p
(

m
(k)
i

= 0|z
(1:k)

)

=0.5

(complete uncertainty);

⋄ Measurement update A new energy matrix is collected for each steering direction
and time bin. The likelihood functions p

(

z
(k)

|mi = 1
)

and p
(

z
(k)

|mi = 0
)

are
computed.

⋄ Log-odd update the belief of the map is updated according to

ℓk (mi)=log





p
(

z(k)|mi

)

1− p (z(k)|mi)



+ ℓk−1 (mi) .
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Model–free RL for UAV Control

p1

p2

p1

p2

pNpN

RR LL

update

UU DD

10010 1

PolicyPolicy

Agent/UAV

Learning/Update

E
n
viron

m
en
t
(state)

rewardsLearning module

Reinforcement learning

Algorithm

actions

observations

function: given the state

which actions should I choose?

⋄ Tabular Policies: with discrete (few) number of actions and states, the policy can
be represented as a table;

⋄ With a Q-table, the policy is to check the value of every possible action given the
current state and then choose the action with the highest value;
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Q-Learning

Algorithm 1: Q-Learning Navigation for a Single Episode

Parameters: Set the learning parameters (γ, α, ǫ) and the mission time TM;
Initialization: Initialize the Q-table to zeros and the initial state s0 ;
while k < TM do

Generate a random value ǫk;
if ǫk < ǫ then

Choose a random action ak ∈ A;
else

Choose the action ak ∈ A that corresponds to the maximum Q-value in
Q(sk, :);

end
UAV moves to the new state, collects the reward rk+1 and updates the Q-table
according to

Q(sk,ak)←Q(sk,ak) + α
[

rk+1 + γmax
a

Q(sk+1,a)−Q(sk,ak)
]

end
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Simulation Results
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Examples of estimated trajectories and maps for e = 1 (left) and e = 20 (right). Blue

and red markers indicate the initial UAV and the target position, respectively.
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Simulation Results - Cont.’d.
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Conclusions

⋄ UAVs are a promising technology to realize dynamic wireless
sensor/radar networks;

⋄ UAVs can be intelligent: optimizing their trajectory according to the
assigned tasks;

⋄ Q-learning approach with a combination of intrinsic and extrinsic
rewards for target detection and environment mapping;

⋄ Mapping aided by on-board THz radar allows for an enhanced
ambient awareness;

⋄ Next Steps: Distributed multi-agent learning for multi–target
detection with large networks of UAVs.
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Thank you

Thank You !
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UAV-Radar Mapping - Observation Model, Cont’d

⋄ Measurement model: z(k) = g (m) +N
(

0,R(k)
)

⋄ The generic element gbs (m) is given by the radar range equation as

gbs (m) = σ2TEDNp + Tf

∑

i∈R(s)

Pt c
2 ρ2i G2 Np

f2 (4π)3d4i

� TED ≈ 1/W is the duration of a bin
� Tf is the duration of a time frame
� R(s) is the number of cell located at a distance di
� Pt is the transmitted power
� ρ2i is the radar cross section
� G is the radar antenna gain
� di is the distance
� Np is the number of transmitted pulses
� σ2 = N0 W is the noise variance
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