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ABSTRACT

In this paper we consider a joint detection, mapping and

navigation problem by an unmanned aerial vehicle (UAV)

with real-time learning capabilities. We formulate this prob-

lem as a Markov decision process (MDP), where the UAV

is equipped with a THz radar capable to electronically scan

the environment with high accuracy and to infer its prob-

abilistic occupancy map. The navigation task amounts to

maximizing the desired mapping accuracy and coverage and

to decide whether targets (e.g., people carrying radio devices)

are present or not. With the numerical results, we analyze the

robustness of the considered Q-learning algorithm, and we

discuss practical applications.

Index Terms— Autonomous Navigation, Reinforcement

Learning, Q-learning, Unmanned Aerial Vehicles.

1. INTRODUCTION

Perception and cognition are two essential features for next

generation radar systems. A cognitive radar (CR) is able to

learn from the environment and to adjust its behaviour based

on the received rewards or penalties that represent a feedback

on the CR actions [1].

More recently, in [2,3] a massive multiple-input multiple-

output (MIMO) CR has been investigated for multi-target

detection using a reinforcement learning (RL) algorithm.

In these papers, no prior information about the statistical

model of the disturbance, or of the number of targets, was

assumed for the proper functioning of the radar. Following

a similar research direction, [4] showed the optimization of

the trajectory of a unmanned aerial vehicle (UAV)-radar for

environment mapping and detection using a RL approach

where rewards were predicted within a finite temporal hori-

zon. Indeed, time is a key aspect for UAV networks because

of their limited energy autonomy [5–7] and, thus, it should be

properly accounted for when designing the UAV control for

time-critical applications (e.g., search–and–rescue). In [5],

an information-seeking algorithm is developed for extrater-

restrial exploration and return-to-base application, whereas

in [8, 9] a similar problem is solved using RL for source lo-

calization. Algorithms for UAVs formation, navigation and

self-localization have been proposed in [10–14], and RL for

enhancing communications has been studied in [15–18].

The advent of sixth generation (6G) cellular systems fos-

ters the exploitation of new frequency bands, which suggests

the importance to investigate indoor detection and mapping

using Terahertz (THz) radar technologies, as they are ex-

pected to guarantee unprecedented levels of radio localiza-

tion accuracy [19]. The advantage of operating at THz rather

than microwaves is that the surface illuminated by the in-

terrogation signal reflects back in different directions (diffuse

scattering) and not just specularly [20]. Beyond 100GHz, the

diffuse scattering is comparable with the specular component,

allowing to improve the reconstruction of the surrounding

thanks to the richer backscattered signal.

In this paper, our aim is to explore this technology in the

context of CR-UAV. To be successful in indoor detection and

mapping, the CR-UAV has to autonomously decide where to

go to improve the detection task within a limited available

time. Increasing the ambient awareness through mapping can

also accelerate the overall learning process and the comple-

tion of the UAV primary task. Thus, starting from [4], valid

when empirical models are available, we consider a THz radar

exploiting a Q-learning algorithm with a combination of in-

trinsic (mapping) and extrinsic (detection) rewards. Finally,

we show the impact of the THz radar parameters on the at-

tainable performance through a simulation analysis.

2. PROBLEM FORMULATION

The UAV trajectory is designed to maximize the target de-

tection, mapping accuracy and coverage subject to the mis-

sion time TM and collision avoidance. We formulate the opti-

mization problem as a Markov decision process (MDP). This

problem can be solved using a model-free RL method. An

example of an indoor environment is shown in Fig. 1.

Markov Decision Processes: Following the same nota-

tion as in [21], a MDP is defined by a tuple containing the

state space S , the action space A, the reward space R, and

the probability of transitioning from one state sk, at time in-

stant k, to the next state sk+1. Notably, the random state at

time instant k, indicated with Sk, represents the knowledge

about the environment available to the agent at time instant k,
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Fig. 1: Considered UAV scenario and reference map.

and it can take values sk ∈ S . The actions are chosen accord-

ing to a specific policy π (ak|sk), which is referred to as a

probability density function (pdf) of an action.1 The optimal

policy selects actions that maximize a value function by

π∗ (ak|sk) = argmax
ak

Qπ (sk, ak) , (1)

where the Q-function, Qπ (·), is the expected sum of dis-

counted rewards over all possible policies and is given by

Qπ (sk, ak)=Eπ

{
∞∑

l=0

γlRk+l+1

∣
∣
∣Sk = sk, Ak = ak

}

, (2)

with 0 ≤ γ ≤ 1 being the discount rate and where the

expected reward at time instant k + 1, is rk+1(sk, ak) =
E [Rk+1|Sk = sk, Ak = ak]. Optimal policies share the same

optimal action-value function defined as

Q∗ (sk, ak) = argmax
π

Qπ (sk, ak) , ∀sk, ∀ak. (3)

State: The state vector sk at time k contains the UAV lo-

cation, the map of the environment and a detection variable,

i.e., sk = [pk, mk, tk]
T

, where pk = [xk, yk]
T
∈ R

2 is

the true UAV position, mk ∈ B
Ncell is the true map at time k

described as a vector of Ncell cells in which the map is dis-

cretized, and tk ∈ B is the target variable (equal to one if the

target is present and zero otherwise). As the environment is

considered stationary, it is tk = t and mk = m, ∀k, with

m = [m1, . . . , mi, . . . , mNcell
]
T

, containing the occupancy

value of each cell, i.e., mi ∈ B, and Ncell being the total num-

ber of cells. The state space is2

S = R
2

︸ ︷︷ ︸

UAV position

× B
Ncell

︸ ︷︷ ︸

Map

× B
︸ ︷︷ ︸

Target

. (4)

1Note that π for a discrete state-action is a probability mass function.
2When the dimension of the state space is large (e.g., for large outdoors),

policy iteration might suffer for the “curse of dimensionality” [22].

Actions: The UAV navigation actions can be defined as

ak = ∆pk = [∆xk,∆yk]
T
∈ R

2 in terms of position dis-

placement ∆pk according to Na = 4 actions, where the ac-

tion space, for steps of ∆, is

A =
{

[∆, 0]
︸ ︷︷ ︸

Right

, [−∆, 0]
︸ ︷︷ ︸

Left

, [0, ∆]
︸ ︷︷ ︸

Up

, [0, −∆]
︸ ︷︷ ︸

Down

}

. (5)

Rewards: Following the information foraging philoso-

phy [23, 24], we consider an extrinsic reward that is task-

specific (detection) and it maps state-action pairs to a real-

valued reward, and an intrinsic reward that only indirectly de-

pends on the world state via the UAV internal belief of the

state [23]. Intrinsic rewards are usually used for reward shap-

ing, for example in situations with sparse rewards. The com-

bination of intrinsic and extrinsic rewards allows to speed up

the learning process and to get better policies. According to

this formulation, the reward is defined as [23]

rk+1 = ri, k+1 + η re, k+1, (6)

where we omitted the state and action dependence, η is a

normalizing factor, ri, k+1 = rc,k+1 + rm,k+1 is an intrinsic

reward used for obtaining a sufficient knowledge of the sur-

rounding environment, and re, k+1 = rd,k+1 is a reward for

the considered UAV task. More specifically, rd,k+1 is defined

as the reward accounting for the detection rate that is

rd,k+1 = Qh(
√

λk,
√

ξ), (7)

where Qh is the Marcum’s Q-function of order h, λk is the

measured signal-to-noise ratio (SNR) at time instant k and ξ
is the considered signal detection threshold [4, (37)], [25,26].

For each radar position, we also define a mapping reward

both in terms of coverage (rc,k+1) and accuracy (rm,k+1) as

rc,k+1 ,

∑

i∈Ik
1(i ∈ Dk)

Ncell

, rm,k+1 ,
Hk+1|k(m)

|Ik|
, (8)

where Dk ⊆ Ik represents the subset of the indices of the

intercepted cells that are discovered for the first time, and Ik
is the set of the indices of all the cells illuminated by the radar

at the kth time slot, and 1(x) = 1 if the logical condition x is

verified, otherwise it is 0. Considering rm,k+1, it holds

Hk+1|k(m) = −
∑

i∈Ik

bk+1|k(mi) log2
(
bk+1|k(mi)

)
, (9)

where Hk+1|k(m) represents the entropy indicating the level

of lack of information about m, |Ik| is the cardinality of Ik
[4, (35)], and bk+1|k(mi) is the predicted belief of occupancy

state of the ith cell at time slot k. Note that such reward is

designed in a way to favor actions that reduce the uncertainty

about the environment in the shortest possible time. Finally

we consider a numerical penalty for avoiding crashes with

obstacles and targets.



3. STATE ESTIMATION AND CONTROL

The CR on UAV is a system comprising two estimation pro-

cesses. The first is a “State Estimator” that implements an oc-

cupancy grid (OG) for mapping and a detection module that

determines if a target is present. The second step is a “Policy

Estimator” for the UAV navigation.

3.1. State Estimator: Mapping with OG

The map of the environment is estimated using an OG algo-

rithm [4], and energy measurements collected by the radar

from each steering direction and different tested distances, ac-

cording to the model described in [4, (13)] and [27, (35-37)].

Let bk (mi) be the belief of the occupancy state of the ith
cell at time instant k. Given the binary nature of mi and to

avoid numerical instability, the OG uses log-odds, defined as

ℓk (mi) , log
(

bk(mi)
1−bk(mi)

)

. The major steps are summarized

as follows.

Initialization: The belief of each cell composing the map

is initialized as b0 (mi) = 0.5 (complete uncertainty).

Measurement Update: A new energy matrix is collected

for each steering direction and time bin and it is compared

with the expected received power, evaluated according to the

THz scattering model of [20] and the actual knowledge of the

map. More specifically, it accounts for the scattering term

ρ = 8π
S2 L cos(θi)

Fαr

(
1 + cos(Ψ)

2

)αr

, (10)

where S is the scattering coefficient, θi is the incident angle

with respect to the normal of the obstacle, Ψ = θs − θr is the

difference between the reflected (θr) and the scattered (θs)

angles, and L is the length of the scattering object. Fαr
is a

scaling factor, and αr is the width of the scattering lobe.

Hence, the likelihood functions for the case of occu-

pied/free cells (i.e., p (ok|mi)) are computed as in [4, (22-

23)], where ok is the observation collected at the kth instant.

Log-Odd Update: Finally, for each time instant, the log-

odd update is

ℓk (mi)=log

(
p (ok|mi)

1− p (ok|mi)

)

+ ℓk−1 (mi) . (11)

3.2. Policy Estimator: Control with Q-learning

Q-learning is an off-policy temporal-difference (TD) control

algorithm approach where the policy is learnt run-time while

the UAV is navigating the environment. It is a model-free tab-

ular algorithm whose main steps are reported in Alg. 1, where

we included the possibility of choosing a random action with

probability ǫ (ǫ-greedy approach). TD methods use a gener-

alized policy iteration (GPI) mechanism to alternatively esti-

mate the optimal policy in (1) and the optimal Q-value in (3).

Algorithm 1 Q-Learning Navigation for a Single Episode

Parameters: Set (γ, α, ǫ) and the mission time TM;

Initialization: Initialize the Q-table to zeros, and s0 ;

while k < TM do
Generate a random value ǫk;

if ǫk < ǫ then
Choose a random action ak ∈ A; (exploration)

else
Choose a greedy action ak ∈ A that corresponds to

the maximum Q-value in Q(sk, :); (exploitation)

end

UAV moves to the new state, collects the reward rk+1 and

updates the Q-table according to (12).

end

The advantages of using TD methods instead of Monte Carlo

or dynamic programming is that there is no need of a model

for the environment’s dynamics and an update of the return is

made at each time step.

Moreover, a sample return is considered instead of the ex-

pected return in (2) by the use of sample episodes. For dis-

crete states and actions, the Q-value in (2) can be represented

by a Q-table that, at each time instant, is updated as [21]

Q(sk,ak)←Q(sk,ak)+ (12)

+ α
[

rk+1 + γmax
a

Q(sk+1,a)−Q(sk,ak)
]

,

where α is the learning rate, and the max operator is used to

have a greedy policy. In this case, the learned action-value

function directly approximates the optimal action-value func-

tion in (3), independently from the policy being followed.

4. CASE STUDY

We now assess the navigation and mapping performance by

accounting for a realistic propagation environment and dif-

ferent radar parameters. For the THz scattering model, we

set S = 0.5 (rough surface), L = 0.5 and αr = 1 [20].

Then, we considered an effective radiated isotropic power

(EIRP) of 30 dBm, a receiver noise figure of 4 dB, a trans-

mitted signal with central frequency of 140GHz, and 1GHz

bandwidth. The mapping is performed by a radar equipped

with an antenna array of 100 antennas such that 10 steering di-

rections are required for scanning the environment, and with

a reading range (RR) that is alternatively set to 3m and 7m.

The radar is initially assumed to be in p0 = (2, 5)m and

it moves with steps of ∆ = 0.5m, equal to the cell width.

For mapping parameters, we refer to [4]. For the detection

module, we considered an antenna with 0 dBi gain, a RR of

7m and a target always present and located alternatively in

(8.5, 1.5)m, and (8.5, 8.5)m. We set ξ in (7) by consid-

ering a desired false alarm probability of 10−3. We fixed

TM = 400, Nep = 20 episodes, γ = 0.99, α = 0.9, and
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Fig. 2: Examples of estimated trajectories and maps for e = 1
(left) and e = 20 (right). Blue and red markers indicate p0

and the target position, respectively.
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4.1. Results

Figure 2 shows the UAV trajectory with green markers for

two different episodes, that is, e = 1 (left) and e = 20 (right),

and for different radar RRs, that are RR = 3m (top, middle)

and RR = 7m (bottom). According to the results, the UAV

is capable of reconstructing a reliable copy of the map (see

the reference map in Fig. 1) and of finding a good trajectory

after some training episodes. In fact, during the first episode,

i.e., for e = 1, the radar is still in an exploratory phase, as

evidenced by the scarce map reconstruction, and by the fol-

lowed non–optimized trajectory. This can be explained by the

fact that the detection reward is sparse in the environment and

mapping rewards tend faster to zero, especially for high RR.

Fig. 3 reports the Q-table related to the last instant of Fig. 2-

(e) for each possible action. For example, a UAV located in

(4, 7) will receive the highest reward by choosing the right

action. By contrast, a UAV in (2, 5) will receive the lowest

reward by choosing the left action. Finally, Fig. 4 reports the

behavior of the positive Q-values as a function of the number

of episodes. Notably, for shorter RR, the UAV, driven by cu-

riosity, is pushed to explore more, thus increasing the amount

of received rewards.

5. CONCLUSION

In this paper we showed the UAV capability for autonomous

navigation of an environment to accomplish the goal of de-

tecting a target and of reconstructing a map of the indoors.

We considered a Q-learning approach with a combination of

intrinsic and extrinsic rewards. Our results show the possibil-

ity of attaining the objective by means of a THz radar, which

augments its ambient awareness at each episode and improves

its capability of accomplishing the assigned task of target de-

tection.
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