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1.  BACKGROUND

• Representation learning in DRL
• Why representation learning

• Learn informative and effective features of a task

• Efficiency, robustness, and scalability (Multi-agent DRL)

• Early works combine deep auto-encoder with DRL (Lang et al. 2010)

• Recent works involve 
• advanced unsupervised learning to extract discriminative features from observations (Laskin et 

al. 2020)

• information estimation methods to learn compact/ task-relevant representation for DRL 
(Pacelli et al. 2020)

• model-based DRL to learn abstract state representation/ low-dimensional representation of the 
environment (François-Lavet et al. 2019）
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Lang et al. 2010. Deep Auto-Encoder Neural Networks in Reinforcement Learning.
Laskin et al. 2020. CURL: Contrastive Unsupervised Representations for Reinforcement Learning.
Pacelli et al. 2020. Learning Task-Driven Control Policies via Information Bottlenecks.
François-Lavet et al. 2019. Combined Reinforcement Learning via Abstract Representations.



1.  BACKGROUND

• Issues of representation learning in MADRL
• Teammate/opponent-relevant 

• What to represent

• Combination with MADRL

• Previous works
• Design general frameworks to combine teammate/opponent representation with MADRL 

(He et al. 2016)

• Represent other agents’ behaviors implicitly using their positions at adjacent time steps 
(Jin et al. 2020, Jin et al. 2021)

• This work focuses on 
• Explicit and interpretable other agents’ behavior representation learning based on our 

previous work (Jin et al. 2020)

• Information compression and retention in the representation

• More efficient and scalable algorithm
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Jin et al. 2020. Stabilizing Multi-Agent Deep Reinforcement Learning by Implicitly Estimating Other Agents’ Behaviors.
Jin et al. 2021. Hierarchical and Stable Multiagent Reinforcement Learning for Cooperative Navigation Control.
He et al. 2016. Opponent Modeling in Deep Reinforcement Learning.
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2.  METHOD

• From implicit learning to explicit learning of other 

agents’ behavior representation

• Implicit action representation learning

SMADQN (Jin et al. 2020)

• Define an extended action-value function G for each agent

• Incorporates the states of other agents at two adjacent time 

steps into its input

• Design a stabilized MADRL algorithm

• Other agents’ behavior representation is implicit
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2.  METHOD

• From implicit learning to explicit learning of 

other agents’ behavior representation 

• Explicit action representation learning

• An encoder to learn low-dimensional features of 

other agents’ actions using their states at adjacent 

time steps as inputs

• A classifier to predict the actions via supervised 

learning

• Leverage cross entropy as part of the loss 

• Information compression and retention
• Relevant to the task
• Relevant to other agents
• Filtering out irrelevant information
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2.  METHOD
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• IBORM: Information-Bottleneck-based Other agents’ behavior Representation 

learning for Multi-agent reinforcement learning

• Information bottleneck principle (Tishby et al. 2015)

• Extracting an optimal representation Z of a random variable X about another correlated random 

variable Y while minimizing the amount of irrelevant information

• is formulated as minimizing

• (Y, X, Z) forms a Markov chain, Y → X → Z

Tishby et al. 2015. Deep Learning and the Information Bottleneck Principle.



2.  METHOD
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• IBORM: Information-Bottleneck-based Other agents’ behavior Representation 

learning for Multi-agent reinforcement learning

• Based on IB principle, we constrain the representation learning (encoder) by minimizing

• 𝑎 → 𝜙𝑠 → 𝑧

• 𝑧 = 𝐸𝑁𝐶(𝜙𝑠)

• Overall objective of IBORM

• To minimize



2.  METHOD
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• Mutual information estimation in IBORM

• Leverage Mutual Information Neural Estimator (MINE) (Belghazi et al. 2018)

• Estimate the mutual information between two variables X and Z as

with a trainable neural network 𝑇𝜔

• IBORM uses two MINE networks corresponding to

and                                   .       .      

Belghazi et al. 2018. Mutual Information Neural Estimation.
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3.  EXPERIMENTS
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• Multi-agent cooperative navigation task with the same settings used in our 
previous work (Jin et al. 2020) 

• Agents need to cooperate through motions to reach a set of targets with the 
minimum time cost

• Randomly generate positions of targets and agents in every episode

• Different numbers of targets and agents (N =3, 4, 5, 6, and 7)

Observation: positions of targets and the 

current and last positions of other agents

Action: select a target to head for

𝑎𝑖 ∈ [1,𝑁]

Assuming a constant speed



3.  EXPERIMENTS
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• Training performance IBORM learns faster than the other two methods

IBORM vs. SMADQN (implicit representation) IBORM vs. SMADRON (without information constraints)



3.  EXPERIMENTS
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• Testing performance
• One thousand randomly generated tasks

• Success: agents arrive at different targets without conflicts



3.  EXPERIMENTS
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• Further study
• Effect of different terms in IBORM’s objective function



Outline

1. Background

2. Method

3. Experiments

4. Conclusion

17



4.  CONCLUSION

We leverage information bottleneck principle to push the representation to be 

compact and relevant to both the task and other agents’ behaviors.   

We propose IBORM to facilitate MADRL by learning representation regarding other 

agents’ behaviors in an explicit and more interpretable manner compared with our 

previous work.

Experimental results demonstrate that IBORM learns faster and the resulting policies 

can achieve higher success rate consistently, as compared with implicit behavior

representation learning (SMADQN) and explicit behavior representation learning 

(SMADRON) without considering information compression and utility.
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