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Introduction

• Semantic image segmentation networks work RGB features via RGB

input images.

• Knowing the geometry of the depicted scene can provide useful info

in complex areas (shadow-y spots, similar texture/color in adjacent

semantically different objects etc.) for semantic segmentation to

benefit from.

• Trivial solution: RGB+Depthmap as input to network.

• Drawback: need for RGBD datasets (difficult and costly to acquire).



Introduction

• Popular solution: Multitask network for simultaneous estimation of

depth maps and semantic segmentation maps.

• Drawback: Difficult to train (especially when the depth branch is

trained with self-supervision), high computational complexity.

• Proposed solution:

• Pretrain a separate depth estimation network (self-supervision),

• Train an off-the-shelf semantic segmentation network to get semantic maps.

• During training, force the output segmentation maps to share similar structure to

the depth maps of the pretrained depth estimation network.



Semantic Image Segmentation
• CNNs for Semantic image

segmentation typically uses a

cascade of an encoding and a

decoding subnetwork.

• The final output of the decoder is

a semantic image map, having:
• same spatial resolution as the

input and

• as many channels as the object

class number.

• Per-pixel image classification is

performed.



Semantic Image Segmentation

• Input image: 𝐈 = 𝐼𝑖𝑗 1≤𝑖≤𝑁1
1≤𝑗≤𝑁2

, 𝑁1, 𝑁2 ∈ ℕ.

• Target: 𝐒 = 𝑆𝑖𝑗 1≤𝑖≤𝑁1
1≤𝑗≤𝑁2

(semantic segmentation map)

• 𝑆𝑖𝑗 ∈ 𝒞: label of 𝐼𝑖𝑗, 𝒞 is the set of supported semantic class labels.

• Network output: 𝐒 ∈ ℝ1
𝑁1×𝑁2×|𝒞|, probabilities for each class for each

pixel.



Semantic Image Segmentation
Baseline network: BiSeNet [1]

• accurate real-time semantic segmentation

• two separate network branches:

• Spatial path: a shallow branch to

preserve spatial details, and

• Context path: a deep lightweight

feature extractor for high level

context.

The two branches are later concatenated

and fed to a shallow CNN module for the

final prediction.

[1] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet: Bilateral
segmentation network for real-time semantic segmentation.”, In Proceedings of
the European Conference on Computer Vision (ECCV), 2018.



Self-supervised Depth 
estimation
Depth estimation from monocular image without supervision.

• Video: ℐ = 𝐈0, … , 𝐈𝑡 , 𝐈𝑡+1, … .

• Depth map 𝐃𝑡 corresponding to 𝐈𝑡 is estimated with the help of 𝐈𝑡+1
(no ground truth depth map).

• Camera intrinsics matrix: 𝐊.



Self-supervised Depth 
estimation
Training:

• Estimate relative camera pose 𝐓𝑡→𝑡+1 between consecutive video

frames 𝐈𝑡 and 𝐈𝑡+1 via a dedicated CNN.

• Find coordinates of the projection of 𝐩𝑡 ∈ 𝐈𝑡 on the plane of 𝐈𝑡+1:

𝐩𝑡+1 ≈ 𝐊𝐓𝑡→𝑡+1𝐃 𝐩𝑡 𝐊
−1𝐩𝑡.

• Transform 𝐈𝑡+1 to form an approximation 𝐈𝑡
′ of 𝐈𝑡 via differentiable

bilinear interpolation.



Self-supervised Depth 
estimation
Training:

• Minimize photometric cost function:

𝐿𝑝ℎ𝑜𝑡𝑜 =
1

𝒱


𝐩∈𝒱

‖𝐈𝑡 𝐩 − 𝐈𝑡
′(𝐩) ‖1,

• Where 𝒱 is the set of pixels that fell exactly onto 𝐈𝑡+1 after the

projection.



Disparity/Depth map 
Estimation with NNs

Depth and pose estimation DNNs.



Proposed Method

• Intuitive observation: semantic objects tend to stand out in depth

maps → co-occurrence of image gradients in the two tasks.

• Idea: to enhance semantic segmentation accuracy, force semantic

edges to be absent in areas where there are not any depth edges.

• Depth branch is used only for training, can be totally omitted during

testing.



Proposed Method

• Per-class consistency loss:

𝐿𝑝 =

𝑐=1

𝐶

mean
𝑑𝑆

𝑑𝑥
𝑖, 𝑗, 𝑐 ⋅ 𝑒

−
𝑑𝐷
𝑑𝑥

𝑖,𝑗

1≤𝑖≤𝑁1
1≤𝑗≤𝑁2

+

mean
𝑑𝑆

𝑑𝑦
𝑖, 𝑗, 𝑐 ⋅ 𝑒

−
𝑑𝐷
𝑑𝑦 𝑖,𝑗

1≤𝑖≤𝑁1
1≤𝑗≤𝑁2



Proposed Method

• Holistic consistency loss:

𝐿ℎ = mean 𝑆𝑥
′ 𝑖, 𝑗 ⋅ 𝑒

−
𝑑𝐷
𝑑𝑥 𝑖,𝑗

1≤𝑖≤𝑁1
1≤𝑗≤𝑁2

+

mean 𝑆𝑦
′ 𝑖, 𝑗 ⋅ 𝑒

−
𝑑𝐷
𝑑𝑥 𝑖,𝑗

1≤𝑖≤𝑁1
1≤𝑗≤𝑁2

• where 𝐒𝑘
′ = max

𝑑𝐒

𝑑𝑘
𝑖, 𝑗 1≤𝑖≤𝑁1

1≤𝑗≤𝑁2

.



Proposed Method

Pros:

• No depth ground truth data required,

• No runtime overhead during inference,

• Does not require any architectural modifications to the semantic

segmentation CNN.

Con:

• An appropriate training dataset is difficult to find. Requires:

• RGB images with semantic segmentation ground truth,

• Images must be consecutive video frames,

• Camera intrinsics matrix must be provided.



Evaluation

Dataset:

• Apolloscape dataset: stereo RGB images of size 3384 × 2710.

• Video shot from a moving vehicle while driving on city streets.

• Contains semantic segmentation ground truth for every video frame.

• Camera intrinsics matrix is provided.



Evaluation

Low mean IoU values are expected:

Some classes are too dominant.

A lot of poorly represented classes.



Evaluation

Specifications:

• Rule out problematic areas: cut upper part of each image (lots of sky

pixels) as well as the lower one (filming car bonnet)

• Image rescaling to 832 × 256.

• Backbone network: ResNet-50.



Evaluation

• [1] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang,“BiSeNet: Bilateral segmentation network for real-time semantic segmentation,” in Proceedings of

the European Conference on Computer Vision (ECCV), 2018.

• [2] M. Klingner, A. Bar, and T. Fingscheidt, “Improved noise and attack robustness for semantic segmentation by using multi-task training with self-

supervised depth estimation,” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.

• [3] J. Novosel, P. Viswanath, and B. Arsenali, “Boosting semantic segmentation with multi-task self-supervised learning for autonomous driving

applications,” in Proceedings of Advances in Neural Information Processing Systems (NIPS), 2019.

• [4] P.Y. Chen, A. H Liu, Y.C. Liu, and Y.C.F Wang, “Towards scene understanding: Unsupervised monocular depth estimation with semantic-aware

representation,”in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Method Mean IoU Inference runtime (msec)

Baseline (no depth) [1] 39.557% 6.2

[2] (multitask) 34.318% 6.4

Baseline + [3] (multitask) 37.683% 8.3

Baseline + [4] regularizer (pretrained) 39.610% 6.2

Baseline + [4] regularizer (multitask) 38.153% 9

Baseline + 𝐿ℎ (pretrained, proposed) 40.597% 6.2
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