
Scalable Reinforcement Learning for Routing in Ad-hoc
Networks Based on Physical-Layer Attributes

Wei Yu
Joint work with Wei Cui

Electrical and Computer Engineering Department
University of Toronto

October 28, 2020

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 0 / 26

Introduction

Machine Learning

Universal function mapping – by supervised or reinforcement learning
Incorporating vast amount of data over poorly defined problems
Highly parallel implementation architecture

© Images
from the web
subject to
copyrights

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 1 / 26

Introduction

Deep Reinforcement Learning

Deep Learning: Classification or static optimization probelm
Reinforcement Learning: Decision or dynamic control problem
Deep Reinforcement Learning: Incorporate the environment

0 100 200 300 400 500

0

100

200

300

400

500

DDQN

0 100 200 300 400 500

0

100

200

300

400

500

Closest to Dest inat ion

0 100 200 300 400 500

0

100

200

300

400

500

Largest Data Rate

0 100 200 300 400 500

0

100

200

300

400

500

Best Direct ionThis talk: Deep reinforcement learning for routing

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 2 / 26

Introduction

Routing in Wireless Ad-Hoc Networks

Routing in wireless ad-hoc networks involves sequential decisions in
each hop in order to build up a route that optimizes network utilities.

Multiple flows co-exist in a wireless environment, each consisting of
multiple hops from source to destination with intermediate relays.

Choice of which neighbouring nodes to serve as relays
Amount of interference caused by intermediate nodes

Due to the lack of centralized control, routing in wireless ad-hoc
networks needs to be performed in a distributed manner.

This paper models routing as a Markov decision process, and use
deep reinforcement learning for intelligent routing.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 3 / 26

Background

Markov Decision Process

Markov Decision Process (MDP) is a process in which an agent acts
across time steps in an environment to optimize a reward, defined by:

State space: S
Action space: A
State-transition probability function: p(st+1|st, at)
Reward function: r(st, at)

At any time t, the agent observes the state st ∈ S, executes an action
at ∈ A, and then receives a reward rt, then goes to a new state st+1.
Agent’s policy π : s→ a is a state-to-action mapping, specifying how
the agent chooses actions corresponding to every state in MDP.
Reward is typically cumulative as defined by a discount factor γ:

r0 + γr1 + γ2r2 + γ3r3 + . . . (1)

The MDP control problem is to find an optimal policy π∗ under which
the future cumulative rewards that the agent achieves is maximized.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 4 / 26

Background

Reinforcement Learning

Reinforcement learning (RL) aims to solve the MDP control problem
when the MDP dynamics is unknown.

The agent perceives and estimates the environment through
interactions, then learns π∗ based on estimations about the MDP.

Action-value function is the future cumulative reward after the agent
executes action at at state st while following policy π:

Qπ(st, at) =Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . . | st, at] (2)
=Eπ[rt + γQπ(st+1, at+1) | st, at] (3)

Under π∗, we denote the corresponding action-value function as Q∗:

Q∗(st, at) = Eπ∗ [rt + γQ∗(st+1, at+1) | st, at] (4)

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 5 / 26

Background

Q-Learning

Q-Learning is a RL algorithm that learns the Q∗ function, then
deduces the optimal policy π∗ by acting greedily based on Q∗:

π∗(st) = argmaxaQ∗(st, a) (5)

Q-Learning has the following two key properties:
Model-free: No explicit modeling of environment.
Value-based: Learns state-action values, then derives policy.

Q-Learning is appealing for routing in ad-hoc networks:
Ad-hoc networks constantly change due to node mobility. Model-free
algorithms allow bypassing the MDP state transition estimation.
In routing, actions are the selection of next hop. Q-Learning directly
estimates the value of each choice, then select the best hop.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 6 / 26

Background

Classic Q-Learning

Algorithm 1 Classic Q-Learning
1: ∀s, a, randomly initialize Q(s, a)
2: Set Q(sterminal, a) = 0 : ∀a
3: for i = 1→ Number of Episodes do
4: Initialize st ← s0
5: while Episode Not Finished do

6: π(st) =
{

argmaxaQ(st, a) with probability 1− ε
random action with probability ε

7: Generate at ← π(st), then execute it. Observe rt and st+1
8: Q(st, at)← Q(st, at) + αt[rt + γmaxaQ(st+1, a)−Q(st, at)]
9: st ← st+1

10: end while
11: end for

Note: αt is the learning rate. Typically, ε→ 0 as training goes on.
Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 7 / 26

Background

Deep Q-Learning (DQL)

In classical Q-Learning, Q(s, a) is stored in tabular form, which
becomes intractable for large MDPs or MDPs with continuous states.

Deep Q-Learning is an algorithm using a deep neural network (referred
to as the Deep Q Network (DQN)) to approximate the Q function.

To train a DQN, we minimize the loss for each state-action (st, at):

(rt + γmaxaQ(st+1, a)−Q(st, at))2 (6)

DQN enjoys generalization ability to unseen state-action pairs.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 8 / 26

Prior Work

DQL for Routing in Ad-Hoc Networks

Routing is about making decisions in response to local environment
for optimizing a global reward, so it is well suited for DQL.

However, prior works on using DQL for routing assume:
1 Network model with fixed set of connections;

– Does not account for physical-layer SINR based QoS.

2 A distinct agent is trained for each node in the network;
– Limited scalability and generalization capability.

3 The same network is used for both training and testing;
– Limited ability to adapt to network changes

This work: Same agent for all flows based on physical-layer attributes!

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 9 / 26

Problem formulation

Ad-Hoc Network Routing Problem

Consider a wireless ad-hoc network with N mobile nodes, and M
data flows, each with a source and a destination at fixed locations.0 100 200 300 400 500

0

100

200

300

400

500

DDQN

0 100 200 300 400 500

0

100

200

300

400

500

Closest to Dest inat ion

0 100 200 300 400 500

0

100

200

300

400

500

Largest Data Rate

0 100 200 300 400 500

0

100

200

300

400

500

Best Direct ion

Action: To choose an ordered list of intermediary relay nodes.
State: Network configuration, e.g., pathloss and interference pattern.
Reward: End-to-end throughput, which depends on bottleneck link.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 10 / 26

Problem formulation

Physical Layer Attributes

The link rate from node i to node j:

R(i,j) = W log

1 + |hij |2pixi∑
k 6=i,j
k∈T ∪N

|hkj |2pkxk + σ2

 (7)

where xi ∈ {0, 1} indicates whether node ni is transmitting or idle as
determined by the routing solution.
For a data flow f taking the route n1 → . . . ni → . . . nr, the overall
throughput is determined by its bottleneck rate:

Rf = min
i=1,2,...,r−1

R(ni,ni+1) (8)

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 11 / 26

Problem formulation

Bottlenecks in Routing

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 12 / 26

Problem formulation

Network Objective

Multiple flows in a network compete with each other:
A node cannot serve as a relay for two flows;
The flows produce interference with each other.

Possible network objective functions:

Objective A: Sum-Rate
∑
f∈F

Rf (9)

Objective B: Min-Rate min
f∈F

Rf (10)

Optimizing a single flow is already challenging: Discrete & Nonconvex
Optimizing multiple flows is even more so due to their interactions.
This work adopts a sequential order for establishing routes.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 13 / 26

Approach

Associate an Agent at Frontier Node of Each Flow

The agent moves along the route to decide the best next hop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Agent

S1

S2

S3

S1: distance to this neighbor
S2: angle offset
S3: interference the neighbor
is exposed to

The same agent is used for all nodes along the route and for all flows!

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 14 / 26

Approach

States and Actions

Action space:
Consider c nearest neighbors as candidates for next-hop.
One action for reprobing: if none of the c strongest neighbors is a
suitable next hop, it proceeds to probe the next c strongest neighbors.

State space: The agent gathers information for each c neighbors:
1 The distance between the neighbor and the frontier node.
2 The angle between direction to neighbor and direction to destination.
3 The total interference the neighbor is exposed to.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 15 / 26

Approach

Novel Reward

Bottleneck throughput of the route is not known until the last hop!

Further, the reward could be determined by an earlier link, making the
rewards (and Q-values) independent of the agent’s future actions.

Instead, we propose the novel Q-value definition as the bottleneck
link rate from that node onwards in the route:

Q̃(sk, ak) = min
i=k...h−1

R(ni,ni+1) (11)

It incorporates the future information (and no past information).
It is a metric for determining optimal actions.
Unlike in usual Q-learning, it does not stem from a reward definition.

Note that Q̃ can be determined only after we complete the route.
Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 16 / 26

Approach

Deep Q-Learning for Routing

Since the states are continuous variables, we utilize deep Q-Learning
so the agent can generalize over unseen portions of the state space.

The input is a vector of length 3c (three features for each neighbor).
The inputs are processed by fully connected layers with nonlinearities.
We adopt state-of-the-art dueling-DQN network architecture.
The output is the Q-value for different actions.

The dueling-DQN is trained using the experience-replay technique.
We only train the agent on one data flow, while fixing other flows.
Initially, random explorations are performed and stored in replay buffer.
Then, the agent follows the ε-greedy policy to gather more experiences.
If the selected node is not within c strongest neighbors, we get reprobe.
Objective is to predict the correct Q̃(s, a), (i.e., future bottleneck rate).

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 17 / 26

Approach

Dueling DQN Agent

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Input:
State S

s1

s3c

state value
estimate

action advantage
estimate
for a1

action advantage
estimate
for ac+1

Action-Advantage Branch

State-Value Branch

Q(S, a1)

Q(S, ac+1)

C: the number of strongest
neighbors explored

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 18 / 26

Approach

DQN Training with Replay Buffer

state action reward

Replay Buffer

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Agent

S1

S2

S3

S1: distance to this neighbor
S2: angle offset
S3: interference the neighbor
is exposed to

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Input:

State S

s1

s3c

state value
estimate

action advantage
estimate

for a1

action advantage
estimate

for ac+1

Action-Advantage Branch

State-Value Branch

Q(S,a1)

Q(S,ac+1)

C: the number of strongest
neighbors explored

Gather
Experience

Store

Sample Experience
to Train

Act
(with ε-greedy)

(FIFO, size 30K)

Same Agent for All Nodes in All Flows!

States: Physical-Layer Attributes
Action: Routing Choices
Reward: Future Bottleneck Rate

(mini-batch, size 1K)

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 19 / 26

Approach

Agent Policy Enhancements

From domain knowledge, we propose enhancements to agent’s policy:

1 If the agent chooses a neighbor that does not have the strongest
channel from the frontier node, then all neighbors with stronger
channels are excluded from future consideration for the next hop.

2 If the destination node is within the agent’s c strongest neighbors, then
the agent would not choose any neighbor which has a weaker channel.

These are to prevent non-essential back-and-forth hops.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 20 / 26

Simulation

Ad-Hoc Wireless Network Model

Wireless ad-hoc network in 500×500m2 area with M = 3 data flows.

Full frequency reuse with 5MHz bandwidth at 2.4GHz carrier
frequency; 1.5m antenna height and 2.5dB antenna gain. Full duplex.

Additive white Gaussian noise at -150dBm/Hz.

Max transmit power is set to be constant across each link at 30dBm.

Short-range outdoor model ITU-1411 distance-dependent pathloss.

The density of nodes in different regions may be different: nine
sub-regions, with (5, 10, 7, 6, 7, 4, 8, 3, 6) nodes in each sub-region.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 21 / 26

Simulation

Neural Network Configuration

The agent can explore c = 6 strongest neighbors.

The specifications of neural network layers are as following:
Parameters Number of Neurons

Initial Main-Branch
fully-connected layers

1st 120
2nd 120

State-Value Function
fully-connected layers

1st 75
2nd 1 (1 state value)

Action-Advantage Function
fully-connected layers

1st 75
2nd 7 (7 actions)

We randomly generate 520K ad-hoc network layouts to train our
agent: 20K are used for random exploration to generate initial
experience; 500K are used to train the agent using the ε-greedy policy.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 22 / 26

Simulation

Sum-Rate and Min-Rate Results

Table: Average Sum-Rate and Min-Rate Performances (kbps)

Methods Sum Rate Min Rate
DDQN Agent 450.6 60.86
Closest-to-destination among
strongest neighbors 149.7 18.65

Best-direction among
strongest neighbors 156.1 16.22

Largest-data-rate
among strongest neighbors 67.4 1.32

Strongest neighbor 56.1 0.63
Lowest-interference among
strongest neighbors 32.4 2.72

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 23 / 26

Simulation

Analyzing the Routing Strategies

0 100 200 300 400 500

0

100

200

300

400

500

DDQN

0 100 200 300 400 500

0

100

200

300

400

500

Closest to Dest inat ion

0 100 200 300 400 500

0

100

200

300

400

500

Largest Data Rate

0 100 200 300 400 500

0

100

200

300

400

500

Best Direct ion

Our agent spreads out all data flows to mitigate mutual interference, while still
maintaining strong and properly directed links to form the routes.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 24 / 26

Simulation

Generalization to Larger Ad-hoc Networks

We directly use the same model previously trained under the original
setting for the routing of 10 data flows in an area of 1.5km x 1.5km.

0 20 40 60 80 100

Rate (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

 o
v

e
r

T
e

s
t

D
2

D
 N

e
tw

o
rk

s

DDQN

Closest to Dest inat ion

Lowest Interference

Strongest Neighbor

Largest Data Rate

Best Direct ion

Figure: Cumulative distribution function of sum rate in 500 large-scale networks.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 25 / 26

Conclusions

Conclusion

We propose a physical-layer based reinforcement learning approach to
the wireless ad-hoc network routing problem.

By training a universal agent along the flow that takes the physical
environment as the input, along with a novel reward definition, we
have arrived at a highly scalable routing algorithm.

The agent can be reused among all data flows, adapted to the varying
network layout characteristics, and generalized to large-scale networks.

Our hope is to show eventually that deep Q-learning can be used to
tackle the fundamental spectrum sharing problem in dense networks.

[Reference] Wei Cui and Wei Yu, “Scalable Reinforcement Learning for Routing in Ad
Hoc Networks Based on Physical-Layer Attributes”, submitted to IEEE ICASSP, 2021.

Wei Yu (University of Toronto) Reinforcement Learning for Routing October 28, 2020 26 / 26

	Introduction
	Background
	Prior Work
	Problem formulation
	Approach
	Simulation
	Conclusions

