

CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation

Ange Lou, Murray H. Loew

The Department of Biomedical Engineering, The George Washington University, Washington DC

> IEEE International Conference on Image Processing (ICIP) September, 2021

Background

- **Real-time** semantic segmentation is playing a more important role in computer vision, due to the growing demand for **mobile devices** and **autonomous driving**.
- The goal in our study is to design an algorithm to **balance** the **performance**, inference **speed** and **parameters**.
- Main contributions:

(1) Proposed an efficient CNN module – Channel-wise Feature Pyramid (CFP) module;

(2) Designed the CFPNet based on CFP module.

Previous work

- In the DC-UNet, we proposed a dual-channel U-Net that achieve better performance in medical segmentation.
- DC-UNet only has 1/3 parameters compared with U-Net.

Figure 1. Dual-channel block.

Method

- CFP module is based on Feature Pyramid (FP) channel.
- Each channel is designed by using asymmetric convolution.

Figure 2. Naïve CFP module (left); Feature Pyramid (FP) channel (right).

Method

• In order to eliminate the gridding artifacts, we applied hierarchical feature fusion (HFF) in naïve CFP module.

Figure 3. (a) Feature without HFF; (b) Feature with HFF; (c) CFP module.

Method

• We build CFPNet based on CFP module.

Figure 4. Architecture of CFPNet. (n, m) are repeat times of CFP-1 and CFP-2

Datasets

- Cityscapes: It contains 5000 fine annotation and 20000 coarser annotation images. The whole datasets contain 19 classes that belong to 7 categories.
- CamVid: 101 for validation and 233 for testing. It contains **11** classes.

Figure 5. Cityscapes dataset. Images (left); Label (right).

Figure 6. CamVid dataset. Images (left); Label (right).

Experiments

• We test different repeat times $(n, m) = \{(1, 2), (1, 3) \text{ and } (2, 6)\}$ on Cityscapes dataset.

Figure 7. Results. From top to bottom is original image, CFPNet-V1, CFPNet-V2 and CFPNet-V3

Figure 7. Results. From top to bottom is original image, CFPNet-V1, CFPNet-V2 and CFPNet-V3

Net	Roa	Sid	Bui	Wal	Fen	Pol	TLi	TSi	Veg	Ter	Sky	Per	Rid	Car	Tru	Bus	Tra	Mot	Bic	mIoU
V1	96.7	76.3	88.0	36.0	46.9	50.2	43.9	58.5	89.8	55.1	91.2	69.0	41.5	89.7	39.5	54.4	23.7	26.6	63.2	60.4
V2	97.4	79.8	89.9	47.4	50.7	55.3	53.9	67.2	90.9	59.2	93.4	74.5	48.6	92.3	49.9	63.1	31.1	49.3	69.9	66.5
V3	97.8	81.4	90.5	46.4	50.6	56.4	61.5	67.7	92.1	68.9	94.3	80.4	60.7	93.9	51.4	68.0	50.8	51.2	67.7	70.1

Results

Network	Pretrain	InputSize	mIoU (%)	FPS	Parameters	GPU
DeepLab-v2	ImageNet	512×1024	70.4	< 1	44	TitanX
PSPNet	ImageNet	713×713	78.4	< 1	65.7	TitanX
SegNet	ImageNet	360×640	56.1	14.6	29.5	TitanX
ENet	None	512×1024	58.3	76.9	0.4	TitanX
SQ	ImageNet	1024×2048	59.8	16.7	-	TitanX
ESPNet	None	512×1024	60.3	112	0.4	TitanX-P
ContextNet	None	1024×2048	66.1	18.3	0.85	TitanX
ERFNet	None	512×1024	68.0	41.7	2.1	TitanX
BiSeNet	ImageNet	768×1536	68.4	105.8	5.8	TitanXp
ICNet	ImageNet	1024×2048	69.5	30.3	7.8	TitanX
CGNet	None	360×640	64.8	50	0.5	2×V100
LEDNet	None	512×1024	70.6	71	0.94	1080Ti
DABNet	None	1024×2048	70.1	27.7	0.76	1080Ti
CFPNet	None	1024×2048	70.1	30	0.55	2080Ti

Table 1. Evaluation results on the **Cityscapes** test set.

TitanX represents the TitanX Maxwell, TitanX-P represents the TitanX Pascal and 2080Ti represents RTX 2080Ti

Results

Network	mIoU (%)	Parameters (M)			
ENet	51.3	0.36			
SegNet	55.6	29.5			
FCN-8s [21]	57.0	134.5			
Dilation8 [33]	65.3	140.8			
BiSeNet [32]	65.6	5.8			
ESPNet [5]	55.6	0.36			
CFPNet	64.7	0.55			

Table 2. Performance on **CamVid** test set

Results

Figure 8. (a) Acc vs Parameters. (Note: the areas of circle are **proportional** to the parameters); (b) Acc vs Speed. (Note: the inference of **GPU** and **input size**).

Conclusion

Both the analysis and experimental results on Cityscapes and CamVid dataset show the potential of CFPNet as a tiny, fast and efficient network.

We continue to lead it into medical image segmentation.

Thank you for your attention.

Questions & Comments