

ROBUST CAMERA POSE ESTIMATION FOR IMAGE STITCHING

Laixi Shi¹, Dehong Liu², Jay Thornton²

Date 7/18/2021

¹Carnegie Mellon University, PA, USA

²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

ICIP 2021

© MERL

Motivation: Image Stitching

- Motivation:
 - High resolution requirement, large scene.
 - Applications: Google earth mapping, panoramic image construction, video stabilization.
- Image stitching: fuse a collection of overlapped images to achieve a broad view of a scene with satisfactory resolution.
 - Pixel-based/Feature based

Challenges

- Essential Task : estimate the camera poses of the sequence of images under fusion.
- Challenges of camera pose estimation:

camera pose errors \rightarrow evident image visual mismatch.

- Feature mismatch → irreversible abnormal camera pose
- − A large amount of images → accumulated pose error

Main Contribution

Methods	Challenge: abnormal pose error	Challenge: accumulated pose error	
Pairwise stitching	×	×	
Bundle adjustment	×	МАУВЕ	
Least square	×	MAYBE	
Ours	\bigcirc	\bigcirc	

Performance

Presentation Pipeline

- Framework Pipeline
- Camera image simulation process
- Image stitching
 - Camera pose estimation module
 - Image fusion and super-resolution reconstruction module

Framework Pipeline

• Image stitching process consisting of camera pose estimation module and image fusion module.

Presentation Pipeline

- Framework Pipeline
- Camera image simulation process
- Image stitching
 - Camera pose estimation module
 - Image fusion and super-resolution reconstruction module

Camera Image Simulation Process

• Parameters:

- The number of images N = 50
- Camera image resolution: 500 * 600 pixels.

Camera Image Examples

Random camera pose: images are captured with unknown random perturbation.

5 images along y axis

Presentation Pipeline

- Framework Pipeline
- Camera image simulation process
- Image stitching
 - Camera pose estimation module
 - Image fusion and super-resolution reconstruction module

Pinhole Camera Model

$$\begin{bmatrix} \boldsymbol{x} \\ 1 \end{bmatrix} = \frac{1}{v} \boldsymbol{P}_s \begin{bmatrix} \boldsymbol{R} & \boldsymbol{T} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ 1 \end{bmatrix} = \frac{1}{v} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{T} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_u \\ \boldsymbol{y}_u \\ \boldsymbol{z}_u \\ 1 \end{bmatrix},$$

- $R \in \mathbb{R}^{3 \times 3}$, $T \in \mathbb{R}^{3}$: the unknown rotation and translation depend on the camera pose:

$$\boldsymbol{p} = [\theta_x, \theta_y, \theta_z, T_x, T_y, T_z]^\top \in \mathbb{R}^6$$

- P_s : the known perspective matrix of the camera. - $u = [x_u, y_u, z_u]^{\mathsf{T}}$: a pixel u on the 3D object surface. - $x = [x, y]^{\mathsf{T}}$: the pixel position on the camera focal plane. - f is the focal length, v is a pixel-dependent normalization term.

Goal: estimate all camera poses $\{p_i\}_{i=1}^N$ of N images $\{X_i\}_{i=1}^N$.

Goal: Estimate Relative camera pose matrix

• Estimate all the relative camera poses $\{p_i\}_{i=2}^N$ of N images (with p_1 as reference):

$$oldsymbol{P} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ \cdots \ oldsymbol{p}_N \end{bmatrix} = egin{bmatrix} oldsymbol{h}_1 & oldsymbol{h}_2 & \cdots & oldsymbol{h}_6 \end{bmatrix} \in \mathbb{R}^{N imes 6}$$

• Relative camera pose matrix: for each dimension k of the pose

$$\boldsymbol{L}^{(k)}(i,j) = \boldsymbol{h}_k(i) - \boldsymbol{h}_k(j)$$

- the (i, j)-th entry is the relative camera pose associated with the image pair X_i and X_j .

Camera pose estimation

----> Relative camera pose matrices estimation.

Intuition: low rank structure

• Relative camera pose matrix:

$$oldsymbol{L}^{(k)} = oldsymbol{h}_k oldsymbol{1}^ op - oldsymbol{1}oldsymbol{h}_k^ op \in \mathbb{R}^{N imes N}$$

• For any $oldsymbol{h}_k
eq a oldsymbol{1}$,

$$\operatorname{rank}(\boldsymbol{L}^{(k)}) = \operatorname{rank}(\boldsymbol{h}_k \boldsymbol{1}^\top) + \operatorname{rank}(\boldsymbol{1}\boldsymbol{h}_k^\top) = 2$$

Problem Formulation: recover camera pose matrices

• For each dimension k of the pose: estimate relative camera pose matrices $L^{(k)}$:

$$\boldsymbol{M} \odot \widetilde{\boldsymbol{L}}^{(k)} = \boldsymbol{M} \odot (\boldsymbol{L}^{(k)} + \boldsymbol{S}^{(k)}), \text{ for } k = 1, \cdots, K,$$

- $\tilde{L}^{(k)}$: the observation of the relative camera pose matrices (each (i, j)-th entry is calculated between X_i and X_j using pairwise stitching.)
- $-M \in \mathbb{R}^{N \times N}$: the observation mask

 $\boldsymbol{M}(i,j) = \begin{cases} 1 & \text{if } \widetilde{L}^{(k)}(i,j) \text{ is observable} \\ 0 & \text{if } \widetilde{L}^{(k)}(i,j) \text{ is not observable} \end{cases}$

 $-S^{(k)} \in \mathbb{R}^{N \times N}$: represents sparse pose estimation errors

Problem Formulation

• Vectorize $oldsymbol{M}\odot\widetilde{oldsymbol{L}}^{(k)},oldsymbol{M}\odotoldsymbol{L}^{(k)},oldsymbol{M}\odotoldsymbol{S}^{(k)}$:

$$\begin{split} \widetilde{\boldsymbol{l}}^{(k)} &= \operatorname{vec}(\{\widetilde{\boldsymbol{L}}^{(k)}(i,j)|_{\boldsymbol{M}(i,j)=1}\}) \in \mathbb{R}^{|\boldsymbol{M}|}, \\ \boldsymbol{s}^{(k)} &= \operatorname{vec}(\{\boldsymbol{S}^{(k)}(i,j)|_{\boldsymbol{M}(i,j)=1}\}) \in \mathbb{R}^{|\boldsymbol{M}|}, \\ \boldsymbol{l}^{(k)} &= \operatorname{vec}(\{\boldsymbol{L}^{(k)}(i,j)|_{\boldsymbol{M}(i,j)=1}\}) \in \mathbb{R}^{|\boldsymbol{M}|} \\ - \text{ where } \quad \boldsymbol{l}^{(k)} &= \boldsymbol{A}\boldsymbol{h}_k \end{split}$$

• Concatenate K=6 dimensions of a camera pose:

$$\begin{split} \widetilde{\boldsymbol{L}} &= [\widetilde{\boldsymbol{l}}^{(1)}, \widetilde{\boldsymbol{l}}^{(2)}, \cdots, \widetilde{\boldsymbol{l}}^{(K)}] \in \mathbb{R}^{|\boldsymbol{M}| \times K}, \\ \boldsymbol{S} &= [\boldsymbol{s}^{(1)}, \boldsymbol{s}^{(2)}, \cdots, \boldsymbol{s}^{(K)}] \in \mathbb{R}^{|\boldsymbol{M}| \times K}, \\ \boldsymbol{L} &= [\boldsymbol{l}^{(1)}, \boldsymbol{l}^{(2)}, \cdots, \boldsymbol{l}^{(K)}] = \boldsymbol{A} \boldsymbol{P} \in \mathbb{R}^{|\boldsymbol{M}| \times K} \end{split}$$

Problem Formulation

Optimization problem formulation:

$$\min_{\boldsymbol{S},\boldsymbol{P}}\frac{1}{2}\left\|\left(\widetilde{\boldsymbol{L}}-\boldsymbol{A}\boldsymbol{P}-\boldsymbol{S}\right)\boldsymbol{W}\right\|_{F}^{2}+\lambda\left\|\boldsymbol{S}\boldsymbol{W}\right\|_{2,1}$$

Data fidelity

Joint sparsity regularization

 $-W = \text{diag}(w = [w_1, \dots, w_6]^T) \in R^{6 \times 6}$: the magnitude normalization parameter for different dimensions of a camera pose with

$$w_{k} = \frac{N-1}{\sum_{i=1}^{N-1} |\tilde{\boldsymbol{L}}^{(k)}(i, i+1)|}$$

 $-\|\cdot\|_{2,1} : \text{the } \ell_{2,1} \text{ norm, i.e., for any matrix } \boldsymbol{Q} \in R^{I \times J}$ $\|\boldsymbol{Q}\|_{2,1} = \sum_{i=1}^{I} \sqrt{\sum_{j=1}^{J} \left[Q(i,j)\right]^2}$

Problem Formulation

• Alternating minimization method:

$$\min_{\boldsymbol{S},\boldsymbol{P}} \frac{1}{2} \left\| \left(\widetilde{\boldsymbol{L}} - \boldsymbol{A}\boldsymbol{P} - \boldsymbol{S} \right) \boldsymbol{W} \right\|_{F}^{2} + \lambda \left\| \boldsymbol{S}\boldsymbol{W} \right\|_{2,1}^{2}$$

- Subproblem of P: standard least square

$$oldsymbol{P}^{(t)}=oldsymbol{A}^{\dagger}\left(\widetilde{oldsymbol{L}}-oldsymbol{S}^{(t-1)}
ight)$$

– Subproblem of *S*: row-dependent soft-thresholding

$$oldsymbol{S}_{i,:}^{(t)} = (\widetilde{oldsymbol{L}} - oldsymbol{A}oldsymbol{P}^{(t)})_{i,:} \odot \max\left(0, 1 - rac{\lambda}{\left\|(\widetilde{oldsymbol{L}} - oldsymbol{A}oldsymbol{P}^{(t)})_{i,:}oldsymbol{W}
ight\|_2}
ight)$$

Camera Pose Estimation Results

• Relative camera pose matrices estimation results:

Camera pose estimation results:

	Pairwise	Bundle	LS	Ours
Relative pose error	0.948	0.968	0.140	0.037

Abnormal Camera Pose Error Estimation

Side-product: abnormal camera pose error detection

Presentation Pipeline

- Framework Pipeline
- Camera image simulation process
- Image stitching
 - Camera pose estimation module

Image fusion and super-resolution reconstruction module

Image stitching Results

• Final stitching results:

(a) True image U

(b) \widehat{U} via LS

(c) \widehat{U} via **Ours**

(d) Local area of (a)

(e) Local area of (b)

(f) Local area of (c)

• PSNR results:

	Pairwise	Bundle	LS	Ours
Relative pose error	0.948	0.968	0.140	0.037
PSNR of $\widehat{oldsymbol{U}}$ (dB)	19.23	20.94	26.68	30.29

© MERL

Conclusion

- We propose a robust camera pose estimation method for stitching a large collection of images of a 3D surface with known geometry.
 - constructed a partially observed relative pose matrix for each parameter of camera poses.
 - Estimate poses by recovering the rank-2 matrix of relative camera poses and a sparse matrix of camera pose errors by exploiting the joint sparsity of camera pose errors.
- The proposed method is capable of yielding robust camera pose estimates even if
 - abnormal pose estimates appears
 - camera pose error accumulate during the process
 - numerous images are under fusion.

Thank you for listening!

<u>Contact:</u> <u>laixis@andrew.cmu.edu</u> <u>liudh@merl.com</u>