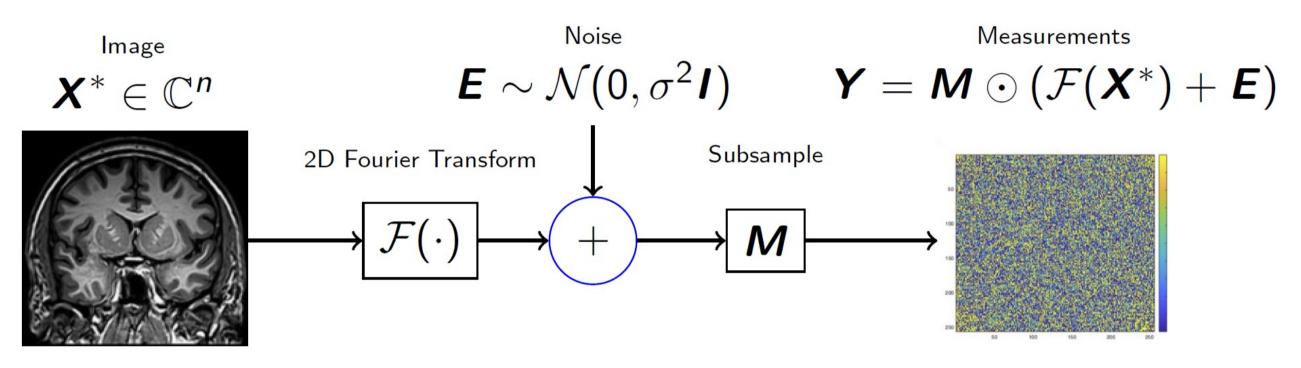
Plug-and-Play Image Reconstruction Meets Stochastic Variance-Reduced Gradient Methods Vincent Monardo,[†] Abhiram Iyer,[†] Sean Donegan,[‡] Marc De Graef,^{*} Yuejie Chi[†] [†]Department of Electrical and Computer Engineering, Carnegie Mellon University [‡]Materials and Manufacturing Directorate, Air Force Research Laboratory *Department of Materials Science and Engineering, Carnegie Mellon University Emails: {vmonardo, abhirami, mdg, yuejiec}@andrew.cmu.edu, sean.donegan@us.af.mil.

CS-MRI Problem Formulation

In Compressed Sensing for Magnetic Resonance Imaging, we observe subsampled, noisy, Fourier coefficients of an image:

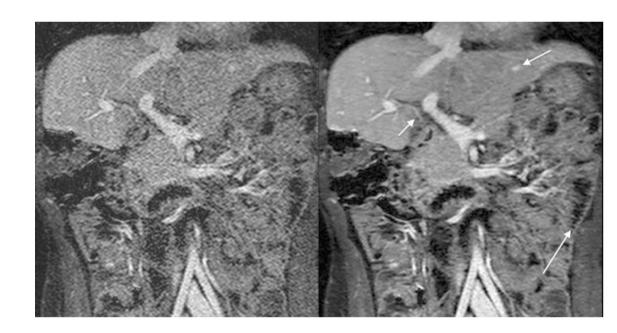


The Importance of Image Priors

How can we get accurate reconstruction in an **undersampled** regime?

 Leverage prior knowledge on images!

• Compressive sensing example: exploit sparsity



Left: linear regression reconstruction. **Right:** sparsity based reconstruction

Recipe for an Iterative Algorithm

Typical optimization set up to incorporate priors:

$$\min_{\boldsymbol{x}} \ell(\boldsymbol{x}) + \lambda r(\boldsymbol{x}).$$

Proximal Gradient Descent: $\boldsymbol{x}_t = \text{prox}_{\lambda r}(\boldsymbol{x}_{t-1} - \eta \nabla \ell(\boldsymbol{x}_{t-1}))$, where,

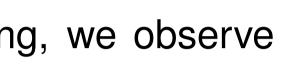
$$\operatorname{prox}_{\lambda g}(\boldsymbol{v}) = \arg\min_{\boldsymbol{z} \in \mathbb{R}^n} \left(\frac{\lambda}{2} \| \boldsymbol{z} - \boldsymbol{v} \|_2^2 + g(\boldsymbol{z}) \right)$$

I want an image that is close to my input...

...that also satisfies my prior knowledge

Resembles **image denoising**!

replace proximal operator with image denoiser \rightarrow Plug-and-Play (PnP) [3]!

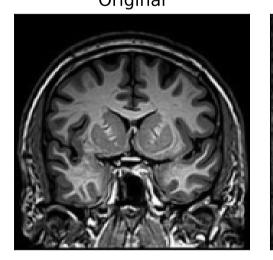


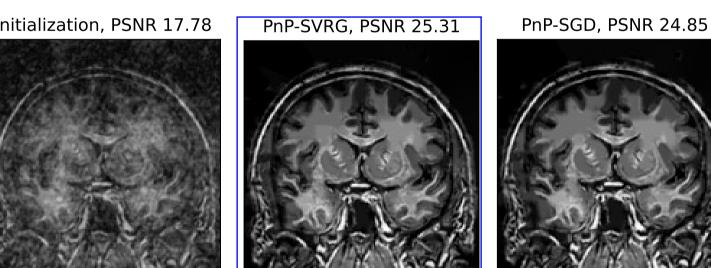
Stochastic Variance Reduced Gradients for PnP

Algorithm 1 PnP-SVRG
Input: $x_0, \eta, T_1, T_2, B, \hat{\sigma}$.
1: Initialize: $oldsymbol{x}_0$.
2: for $s=1,2,\cdots,T_1$ do
3: $ ilde{oldsymbol{x}} = oldsymbol{x}_{s-1}$;
4: $oldsymbol{w} = abla \ell(ilde{oldsymbol{x}})$;
5: $oldsymbol{z}_0 = \widetilde{oldsymbol{x}}$.
6: for $t=1,2,\cdots,T_2$ do
7: pick a set $\mathcal{I}_t \subset \{1,, m\}$ of cardinality B uniform
8: $m{v}_t = rac{1}{B} \sum_{i \in \mathcal{I}_t} (abla \ell_i(m{z}_{t-1}) - abla \ell_i(ilde{m{x}})) + m{w};$ % calcu
9: $oldsymbol{z}_t = denoise_{\hat{\sigma}}(oldsymbol{z}_{t-1} - \eta oldsymbol{v}_t)$.
10: end for
11: $oldsymbol{x}_{s}=oldsymbol{z}_{T_{2}}$.
12: end for
Output: $\hat{m{x}} = m{x}_{T_1}$.

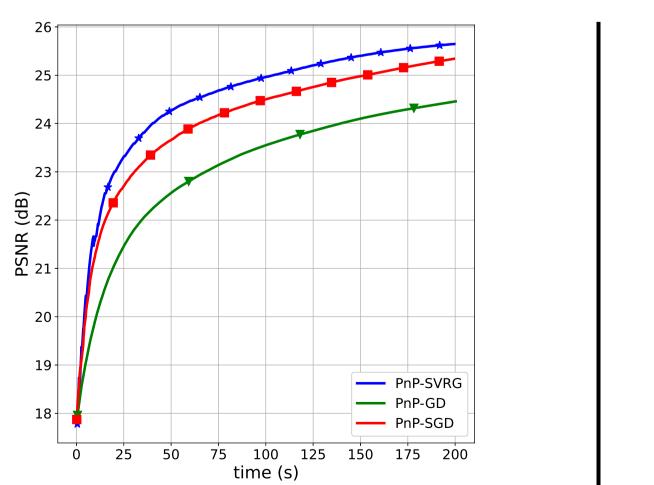
CS-MRI Example Image Reconstruction

Experimental Setup: noise level of $\sigma = 5$, observe 50% of the Fourier coefficients, limit run-time to 200 seconds





Comparison of PSNR Over Time



- noise level of $\sigma = 5$
- sampling rate = 2
- limit run-time to 200 seconds
- Stochastic methods are quicker in the given time frame
- given more time, all approach a similar output

% e.g. back projection

% set reference point % calculate batch gradient at $ilde{x}$

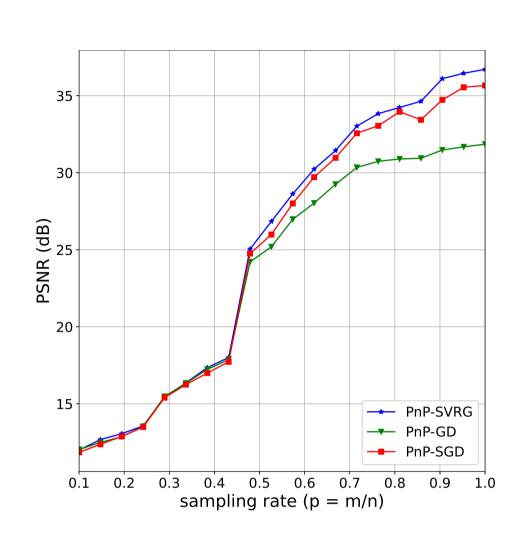
mly at random;

ulate variance-reduced gradient [1] % denoise iterate

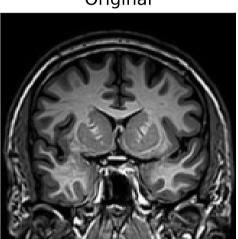
% choose new reference point

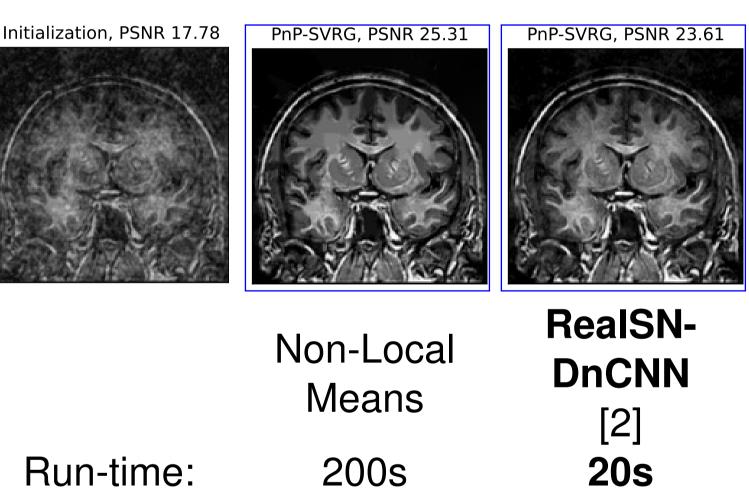
Experimental Set Up:

Impact of Sampling Rate on Accuracy



Comparing PnP-SVRG with Different Denoisers





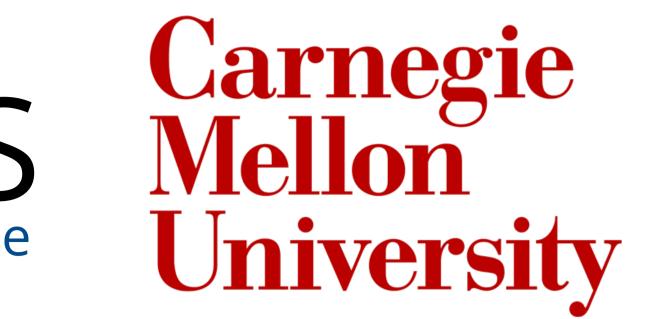
Run-time:

References

- 9, 2013.
- and Information Processing, pages 945–948. IEEE, 2013.

Acknowledgements

This work was supported by the D3OM2S Center of Excellence, Air Force agreement number FA8650-19-2-5209, and by the Carnegie Mellon University Manufacturing Futures Initiative, made possible by the Richard King Mellon Foundation.



Experimental Set Up:

- noise level of $\sigma = 5$
- limit run-time to 200 seconds
- vary sampling rate

Stochastic methods obtain higher image reconstruction accuracy at varied sampling rates.

200s

[1] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. Advances in Neural Information Processing Systems, 1(3):1-

[2] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-play methods provably converge with properly trained denoisers. In International Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

[3] Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-andplay priors for model based reconstruction. In 2013 IEEE Global Conference on Signal