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CS-MRI Problem Formulation

In Compressed Sensing for Magnetic Resonance Imaging, we observe
subsampled, noisy, Fourier coefficients of an image:

The Importance of Image Priors

How can we get accurate recon-
struction in an undersampled
regime?
• Leverage prior knowledge on
images!
• Compressive sensing example:
exploit sparsity

Left: linear regression reconstruction.

Right: sparsity based reconstruction

Recipe for an Iterative Algorithm

Typical optimization set up to incorporate priors:

min
x

`(x) + λr(x).

Proximal Gradient Descent: xt = proxλr(xt−1 − η∇`(xt−1)), where,

proxλg(v) = argminz∈Rn

(
λ
2‖z − v‖22 + g(z)

)
I want an image that is close to my input...

...that also satisfies my prior knowledge

Resembles image denoising!

replace proximal operator with image denoiser→ Plug-and-Play (PnP) [3]!

Stochastic Variance Reduced Gradients for PnP

Algorithm 1 PnP-SVRG
Input: x0, η, T1, T2, B, σ̂.

1: Initialize: x0. % e.g. back projection

2: for s = 1, 2, · · · , T1 do
3: x̃ = xs−1; % set reference point

4: w = ∇`(x̃); % calculate batch gradient at x̃

5: z0 = x̃.
6: for t = 1, 2, · · · , T2 do
7: pick a set It ⊂ {1, ...,m} of cardinality B uniformly at random;
8: vt =

1
B

∑
i∈It(∇`i(zt−1)−∇`i(x̃)) +w; % calculate variance-reduced gradient [1]

9: zt = denoiseσ̂(zt−1 − ηvt). % denoise iterate

10: end for
11: xs = zT2. % choose new reference point

12: end for
Output: x̂ = xT1.

CS-MRI Example Image Reconstruction

Experimental Setup: noise level of σ = 5, observe 50% of the Fourier
coefficients, limit run-time to 200 seconds

Original Initialization, PSNR 17.78 PnP-SVRG, PSNR 25.31 PnP-SGD, PSNR 24.85

Comparison of PSNR Over Time
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Experimental Set Up:

• noise level of σ = 5

• sampling rate = 2

• limit run-time to 200 seconds

Stochastic methods are quicker
in the given time frame

• given more time, all approach a
similar output

Impact of Sampling Rate on Accuracy
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Experimental Set Up:

• noise level of σ = 5

• limit run-time to 200 seconds

• vary sampling rate

Stochastic methods obtain higher
image reconstruction accuracy at
varied sampling rates.

Comparing PnP-SVRG with Different Denoisers
Original Initialization, PSNR 17.78 PnP-SVRG, PSNR 25.31 PnP-SVRG, PSNR 23.61
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