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CS-MRI Problem Formulation

In Compressed Sensing for Magnetic Resonance Imaging, we observe
subsampled, noisy, Fourier coefficients of an image:

Image Noise Measurements
E ~ N(0,0°1) Y =Moo (F(X*)+ E)
2D Fourier Transform A{\ Subsample
o F () >\i/ M >

The Importance of Image Priors

How can we get accurate recon-
struction in an undersampled
regime?

e Leverage prior knowledge on
images!

e Compressive sensing example:
exploit sparsity

Left: linear regression reconstruction.

Right: sparsity based reconstruction

Recipe for an Iterative Algorithm

Typical optimization set up to incorporate priors:

min {(x) + Ar(x).

xr

Proximal Gradient Descent: x; = prox, .(x; 1 — nV{(x;_1)), where,

prox, ,(v) = arg minzer: (5|2 — v|j3 + g(2))

| want an image that is close to my input...
...that also satisfies my prior knowledge

Resembles image denoising!
replace proximal operator with image denoiser — Plug-and-Play (PnP) [3]!

Stochastic Variance Reduced Gradients for PnP

Algorithm 1 PnP-SVRG

|anIt: xo,n, 11,15, B, 0.
1: Initialize: x. h e.g. back projection
2: fors=1,2,--- .77 do

3: T =T _1; % set reference point

4: w — Vf(iﬁ); % calculate batch gradient at @
S5: z) = .

6: fort=1,2---.7>do

7: pick a set Z; C {1, ...,m} of cardinality B uniformly at random:;

8: Vt = % Ziezt(va;(zt_l) — sz(ii‘)) + w, % calculate variance-reduced gradient [1]
9: Zt = denoiseg,(zt_l — nvt). %» denoise iterate
10: end for

11: LTs = ZT,- %» choose new reference point
12: end for

Output: z =z .

CS-MRI Example Image Reconstruction

Experimental Setup: noise level of 0 = 5, observe 50% of the Fourier
coefficients, limit run-time to 200 seconds

Original Initialization, PSNR 17.78 PnP-SVRG, PSNR 25.31 PnP-SGD, PSNR 24.85

Comparison of PSNR Over Time

Experimental Set Up:
*noise level of 0 =5
« sampling rate = 2

(dB)

e limit run-time to 200 seconds

Stochastic methods are quicker
in the given time frame

—— PnP-SVRG
—— PnP-GD

— psen * given more time, all approach a

time (s) similar output
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Impact of Sampling Rate on Accuracy

Experimental Set Up:
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Comparing PnP-SVRG with Different Denoisers

Original Initialization, PSNR 17.78 PnP-SVRG, PSNR 25.31 PnP-SVRG, PSNR 23.61
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