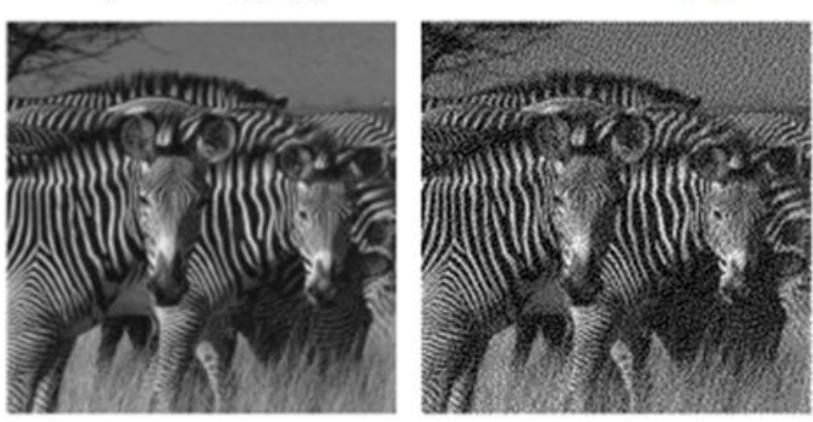


Introduction

- Although image transformation-based defenses were widely considered at an earlier time, most of them have been defeated by adaptive attacks.
- We propose a new image transformation defense based on error diffusion halftoning, and combine it with adversarial training to defend against adversarial examples.
- Error diffusion halftoning projects an image into a 1-bit space and diffuses quantization error to neighboring pixels
- This process can remove adversarial perturbations from a given image while maintaining acceptable image quality in the meantime in favor of recognition.
- The proposed method can improve adversarial robustness even under advanced adaptive attacks, while most of the other image transformation-based defenses do not.

Input image (I)

Halftone (Q)



Prior Works

- JPEG compression
- Bit-depth reduction
- Image denoising
- Gaussian blur
- Mean/median filter
- Non-local means
- ...etc [1]

Defense	Dataset	Distance	Accuracy	
Buckman et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%*	
Ma et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	5%	
Guo et al. (2018)	ImageNet	$0.005(\ell_2)$	0%*	
Dhillon et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%	
Xie et al. (2018)	ImageNet	$0.031 (\ell_{\infty})$	0%*	
Song et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	9%*	
Samangouei et al. (2018)	MNIST	$0.005(\ell_2)$	55%**	

- Most existing image transformation-based defenses are NOT robust against white-box attacks [2].

Error Diffusion Halftoning Against Adversarial Examples

Shao-Yuan Lo and Vishal M.Patel

Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

Error diffusion halftoning: Floyd-Steinberg dithering

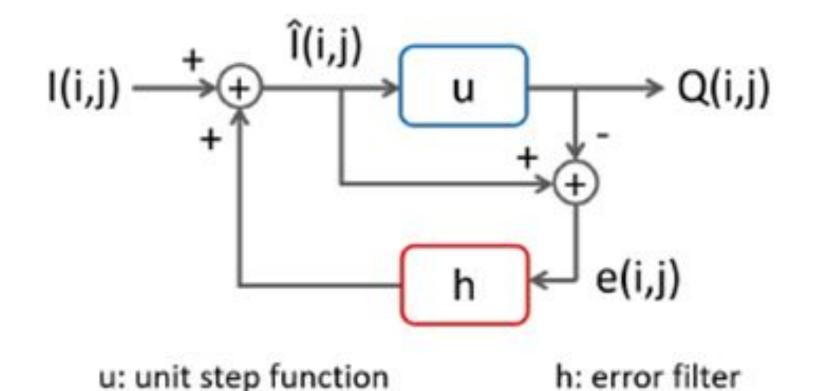
- Quantize each pixel in the raster order (from left to right, top to bottom) one-by-one, and spread the quantization error to the neighboring pixels.
- Beginning with the top-left pixel, the pixel value is binarized by thresholding, then the quantization error is dispersed to neighboring pixels using pre-defined weights.
- Following the raster-scan indexing scheme, the procedure continues until the bottom-right pixel has been transformed.

$$\hat{f}(i,j) = I(i,j) + \sum_{m,n \in S} h(m,n)e(i-m,j-n)$$

 $O(i,j) = u(\hat{I}(i,j) - \theta)$

$$Q(i,j) = u(I(i,j) - \theta)$$

$$e(i,j) = \hat{I}(i,j) - Q(i,j)$$



- The quantization operation invalid the adversarial variations.

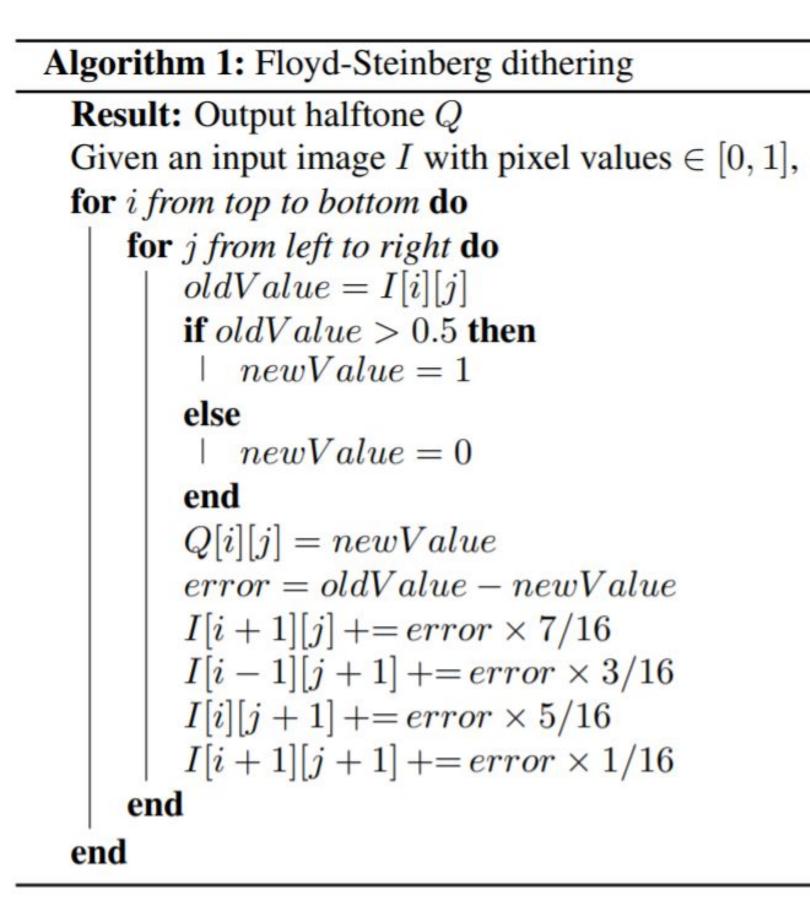
- Updating the values of the neighboring pixels repeatedly makes the adaptive attacks hard to identify the mapping between the original image and the corresponding halftone.
- Spreading quantization errors produces better halftoning quality and tends to enhance edges and object boundary in an image.
- Take **both** adversarial robustness and clean data performance.
- Complementary to adversarial training.

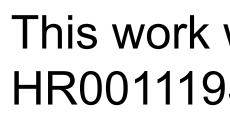
References

[1] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, "Barrage of random transforms for adversarially robust defense," in IEEE Conference on Computer Vision and Pattern Recognition, 2019

[2] A. Athalye, N. Carlini, and D. Wagner, "Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples," in International Conference on Machine Learning, 2018.

d Method





Method Vanilla Gaussian blur Non-local mean

JPEG compressi Bit-depth reduct Halftoning (our Vanilla Gaussian blur Non-local mean JPEG compressi Bit-depth reduct Halftoning (ours

Feature Visualization

Transformed image

Feature at th last conv laye

Transformed image

Feature at th last conv laye

Feature Analysis

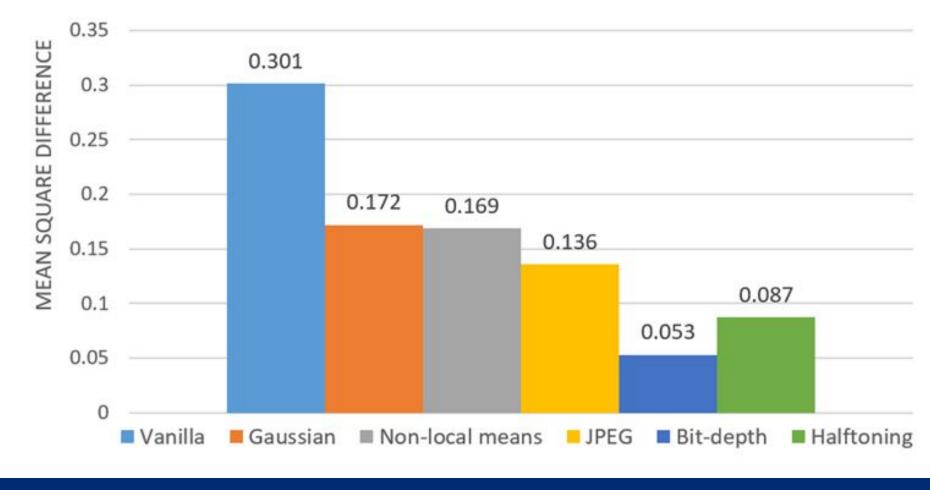
IEEE Signal Processing

Results

Quantitative Results

10	Training	Clean	PGD- ℓ_{∞}	$PGD-\ell_2$	$Mult{-}\ell_\infty$	Mult-l ₂	Avgadv	Avgall
ns sion ction rs)	Standard training	94.03 <u>90.17</u> 88.66 90.06 78.87 88.57	0.01 0.20 0.02 2.97 15.26 <u>9.53</u>	0.20 1.34 0.49 4.82 <u>10.84</u> 11.98	0.05 0.17 0.03 1.81 10.79 <u>5.54</u>	0.01 0.05 0.00 0.22 4.52 <u>1.07</u>	0.07 0.44 0.14 2.46 10.35 <u>7.03</u>	18.86 18.39 17.84 19.98 24.06 23.34
ns sion ction rs)	Adversarial training	83.31 75.96 75.47 24.97 71.66 84.37	<u>51.15</u> 44.59 44.67 38.99 47.34 60.01	50.68 47.12 45.29 43.72 42.40 56.56	54.10 45.07 16.59 <u>59.15</u> 48.50 67.37	40.29 32.48 14.53 <u>44.72</u> 41.63 88.44	49.06 42.32 30.27 46.65 44.97 68.10	55.91 49.04 39.31 42.31 50.31 71.35

	Vanilla	Gaussian blur	Non-local means	JPEG	Bit-depth reduction	Halftone
ed						
he /er						
ed						
he /er						



Acknowledgement

This work was supported by the DARPA GARD Program HR001119S0026-GARD-FP-052

Code