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- Adversarial robustness of deep neural networks is an extensively

studied problem. However, defenses in the video domain are less e PGD-{.: € = 4/255, @ = 1/255, and T = 5.
explored.
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- OUDefend is attached to a target video recognition model as a feature  SPA: 100 adversarial pixcl% on each video frame, € =
restoration block and the entire network is trained end-to-end. — | | 255/255, a = 70/255, and T =
. . . uantitative Results
- Experimental results show that the defenses focusing on images may \ SR Q
be ineffective to videos, while OUDefend enhances robustness ; NpUt B @ o —@— Output Method Params | Clean | PGD-fo, PGD-f, MultAV ROA  AF  SPA | Avgu
against different types of adversarial videos, ranging from additive eaTMres features Clean Model 33.0M | 76.90 256 325 719 016 024 439 | 297
attacks, multiplicative attacks to physically realizable attacks. Madry’s method [7] | 33.0M | 76.90 33.94 3505 4700 4129 7481 5599 | 4801
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Feature Map Comparison
"""" / T4 {/\/ [ - Most restoration networks adopt an encoder-decoder architecture that first shrinks spatial

Previous frames ’ , k

dimension then expands it back collecting global information but overlooking local details.
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7 mm— - '.I. - In our method, we propose two branches: an overcomplete branch (Obranch) and an

segmentation of berign/adversariai frame T undercomplete branch (U-branch).

Segmenter) I / AR e ———
/ l pr me T: Z r: . l r-\,.,«,e\’ W w\’ /‘- : . . "
e * Consistency e T - In the encoder of O-branch, each convolutional layer is followed by an upsampling layer,
“edotame  e—— I e e whereas in the decoder, each convolutional layer is followed by a downsampling layer

(Be“@" ) (Adva') - U-branch is a standard encoder-decoder structure with downsampling in the encoder and

upsampling in the decoder.

Fig. 2. Feature maps after the conv2 block of Clean Model and OUDefend under PGD-/,, and AF. Clean Model is vanilla 3D
: : : : . ResNet-18 trained on clean data. OUDefend is adversarially trained, and here it is inserted after the conv2 block. Top to bottom:
Jia et al. [2] | 0o and Patel. [3] - O'branCh learns to extract flne details while U-branch learns to extract 9|0ba| |nf0rmat|0n. Three selected frames from a video. (a) PGD-/, example. (b) Clean Model’s features under PGD-¢ .. (c) OUDefend’s features
under PGD-/ .. (d) AF example. (e) Clean Model’s features under AF. (f) OUDefend’s features under AF.
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