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Recall: Adversarial Examples
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Recall: Adversarial Examples

* Deep networks are vulnerable to adversarial examples.
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Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR’15.



Adversarial Videos

* Video is a stack of consecutive images.

* A naive way to generate adversarial videos:
Use image-based method directly.

x%% = x + € - sign(V,.L(x,y; 0))

Image: x € RC*HXW

Video: x € RFXCXHXW



Feature Denoising

 Remove adversarial perturbations in
the feature domain instead of the

image domain.

 Mean filter, median filter, bilateral
filter, and non-local means.

Xie et al. Feature Denoising for Improving Adversarial Robustness. CVPR’19.



Proposed Method: Overcomplete Representations

* A typical autoencoder
downsamples features and learns
undercomplete representations.

* OUDefend learns both
undercomplete representations
and overcomplete representations
(upsample features)
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https://ai.plainenglish.io/convolutional-autoencoders-cae-with-tensorflow-97e8d8859cbe.
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Proposed Method: Overcomplete Representations

* Undercomplete representations
have large receptive fields to
collect global information, but
they overlook local details.
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* Overcomplete representations
have opposite properties.

Input

 OUDefend balances global and
local features by learning those
two representations.




Proposed Method: Overcomplete Representations

* Append OUDefend blocks to the target network (after each res block).
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He et al. Deep Residual Learning for Image Recognition. CVPR’16.
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Adversarial Video Types

PGD [Madry et al. ICLR’18]

MultAV (Multiplicative Adversarial Video) [Lo et al. 2020]
ROA (Rectangular Occlusion Attack) [Wu et al. ICLR’20]
AF (Adversarial Framing) [Zajac et al. AAAI'19]

* SPA (Salt-and-Pepper Noise Attack) [Lo et al. 2020]

PGD MultAV ROA



Experimental Results Dataset:
UCF-101

No Defense: Original network trained on clean data

Madry [Madry et al. ICLR’18] : Original network trained by adversarial training (AT)
Xie-A [Xie et al. CVPR’19]: Feature denoising (3D conv) network with AT

Xie-B [Xie et al. CVPR’19]: Feature denoising (2D conv frame-by-frame) network with AT
OUDefend: Proposed OUDefend network with AT

Method | #Params | Clean | PGD Linf | PGD L2 | MultAv ROA AF SPA Avg adv
No Defense | 33.0M 76.90 2.56 3.25 7.19 0.16 0.24 4.39 2.97
Madry 33.0M 76.90 33.94 35.05 47.00 41.29 55.99 55.99 48.01
Xie-A 33.7M 70.82 31.48 33.25 42.69 37.59 58.87 49.14 42.17
Xie-B 34.8M 69.47 30.19 32.65 41.87 38.22 58.74 49.14 41.80

OUDefend | 33.6M 77.90 34.18 35.32 47.63 42.00 56.25 56.29 49.52



Feature Visualization
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Conclusion

* Exploit both undercomplete and overcomplete representations

e Evaluate on 6 different attacks

* Show effectiveness with very small complexity increase
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