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Introduction Regularized Low Rank Tensor Regression Numerical Experiments: Results
Motivation: = Tomographic reconstruction: often an ill-posed problem due to limited data. o —— o
« Perform tomographic reconstruction in ill-posed problem due to limited data. " Regulanzahon. using prior knowledge leads to optimization of the following regularized least A = i
squares function % L

= Apply tensor-based regression model to exploit the natural tensor form of the tomography

2 R
while preserving its spatial correlation structure. W o) = (T TV (7)
° ° ol . 9 - ’ —|_ P w ’ ’ = *.
= Regularization for small-sample-large-parameters challenge and to stabilize the estimates. (W1, W) = 6(W1, W) Z Z AWy p)

d=1r=1 TR(1) TR(2) TR(3)
RMSE=0.2502 RMSE=0.0813 RMSE=0.0811

Existing approaches:

where Py is any regularization function, p tunes the weight applied to the regularization, and

= Analytical reconstruction techniques (e.g., filtered back projection) A determines the weight of specific penalty type.
= Algebraic reconstruction techniques = Elastic net regularization:
= Statistical algorithms (e.g., expectation maximisation) N — 1
Py(w,p)=p | Z=—||w||3 + (2 = \)||wl|; (2) e L0735 e o656 AMSE 077
Our contribution: AV 2 2 o
= we propose to apply the tensor regression model for tomographic reconstruction. where A € [1,2]. . o | _
= Regularized version is proposed to overcome the ill-conditioned nature of tomography. " (2) promotes sparsity and smoothness through a convex combination Of Ly and Ly penalties. A oY e
= (2) improves the recovery of sharp as well as smooth features of the object.
Mathematical Forward Model o ) ] ] Figure 3. Reconstructed image of the simple E|gture 4 ESo(rQnFE)arlsdon of Rl\l/IS.E v(\gltTtharymg numbers of angles
Optimization Algorithm Implementation geometric shape using unregularized TR with ~ Dc-WEEN R and unregiarized T,
. . R=1,...,6,and LSQR.
= 1 e RYXI: 2D discretized object - Ray-Sum Algorithm 1 Low-rank tensor regression TR(R)(Py(w, p)). Noice Fres Data
- XRT Detect . . . . L N e e
= O, T: complete collection of |©| angles and | 7| elector 1: Input: s, L, W, R, A\, p, maximum number of iterations kmax (€.g., 100) and stopping criterion - o Uneauiized TR R R SR
beamle@ts e le.g., 1079 - :
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intersection 3 fork =1,2,..., kmax do Data with Gall.:zrseiltai?lnr?oise (0=0.01)
length of the beam (6, 7) with the pixel (¢, j) | 4 WPF =min (W7, WQI‘C—l) it AR “isn
= 5  RIOUTI=L the lexicographical reordered vector ) \ . . R, i) o e WOOEne@)  TAGSEN@]  TROSEneN)
of 2D measurement data (i.e., sinogram) N \ 5. Wk = min (W, Wa) I SO N e f
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= Goal: reconstruct W by minimising loss function: & break gotd\ o sena )
5 Figure 1. Discrete XRT projection geometry 8. endif z aanannERERREEEREEE Noise free v =001 - =002
p(W) = |{L, W)y — s 9. end for 006E L . L, S OOO%
10: Output: COnStrUCt W using (1) from ﬁna| W17 W2. 123456738 910111213141516171Ife1;3a2;)if):]2s2232425262728293031323334353637383940 F|gure é Reconstruchon CompaHSOn Of TR
Low-Rank Tensor Regression and LSQR for the MRI brain image. Top:
Figure 5. Iterative performance of RMSE provided by LSQR and LSQR: bottom: TR(15)[Enet(2)]. Left:
_ , . i Ce 9 ; ; . TR(5), respectively, for recovering the simple geometric shape. noise-free data; middle: 1% Gaussian
Vectorized approach: large-scale op.hmlzaho.n problgm due to the K= unknown parameters. Numerical Experiments: Setup Top: noise-free data: middle: 1% Gaussian noise-added data: noise-added data: right: 2% Gaussian
E.g. t.o reconstruct 128 x 128 2D object requires 128 = 16384 parameters. bottom: 2% Gaussian noise-added data. noise-added data.
= W with low-rank structure has rank-R CP decompNosmon. « Ground truth samples (see Fig. 2): 2 Brain MRI Circle & Triangle
~ o~ R S simple geometric shape consisting of Rank=52 Rank=15 Conclusion & Discussion
W =Wy, Wq] = Zwl owy . circle and triangle and a MRI brain image.
r=1 = Experimental configuration: image Summary:
* Low-rank approximation with It < I: resolution KX = 64, of beamlets = Exploited the underlying structure of tomography to better capture its latent multilinear
R 7| =91 > V2K, |©| = 30 angles evenly L .
() () sampled within [1, 2 structure and explored the low-rank approximation of their natural tensor form.
W~ [W, Wo] = Zuﬁ ©wy -, (1) P . » 21 = Mitigated the curse of dimensionality, as well as the ill-posedness due to limited data.
1 = Error metric: root mean squared error : .
r (RMSE) * [n a 2D reconstruction problem, our proposed method outperforms the linear least square
where Wi, Wy € REXE 3nd wY) wg“) c REX1 solver. Further, our method is also shown to be more robust to limited number of angles and
. ' el < : tribhH ° increasing levels of added noise.
Maximum likelihood framevvork using Gaussian distribution for prior model leads to Figure 2. Test images and colormap. S
tensor-based loss function: Future Work
2
K (r) (r) References = The extension to 3D reconstruction is natural, with potentially more dramatic benefit.
oW1, W) = ||{ L, Z Wy © W — 9 - = A future direction is to develop a systematic way of optimally choosing the approximation of
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