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Introduction

Motivation:

Perform tomographic reconstruction in ill-posed problem due to limited data.

Apply tensor-based regression model to exploit the natural tensor form of the tomography

while preserving its spatial correlation structure.

Regularization for small-sample-large-parameters challenge and to stabilize the estimates.

Existing approaches:

Analytical reconstruction techniques (e.g., filtered back projection)

Algebraic reconstruction techniques

Statistical algorithms (e.g., expectation maximisation)

Our contribution:

we propose to apply the tensor regression model for tomographic reconstruction.

Regularized version is proposed to overcome the ill-conditioned nature of tomography.

Mathematical Forward Model

W ∈ RK×K : 2D discretized object

Θ, T : complete collection of |Θ| angles and |T |
beamlets

L = [Lθ,τ
ij ] ∈ R|Θ||T |×K×K : 3D tensor of

intersection

length of the beam (θ, τ ) with the pixel (i, j)
s ∈ R|Θ||T |×1: the lexicographical reordered vector
of 2D measurement data (i.e., sinogram)

〈L, W 〉2: discrete Radon projection of the object
W
Goal: reconstruct W by minimising loss function:

φ(W ) = ‖〈L, W 〉2 − s‖2 Figure 1. Discrete XRT projection geometry

Low-Rank Tensor Regression

Vectorized approach: large-scale optimization problem due to the K2 unknown parameters.
E.g. to reconstruct 128 × 128 2D object requires 1282 = 16384 parameters.
W with low-rank structure has rank-R̃ CP decomposition:
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Low-rank approximation with R < R̃:
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where W1, W2 ∈ RK×R, and w
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2 ∈ RK×1.

Maximum likelihood framework using Gaussian distribution for prior model leads to

tensor-based loss function:
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Alternating least squares is used to solve the resulting decomposed components

Regularized Low Rank Tensor Regression

Tomographic reconstruction: often an ill-posed problem due to limited data.

Regularization using prior knowledge leads to optimization of the following regularized least

squares function

l(W1, W2) = φ(W1, W2) +
2∑

d=1

R∑
r=1

Pλ(w(r)
d , ρ),

where Pλ is any regularization function, ρ tunes the weight applied to the regularization, and
λ determines the weight of specific penalty type.
Elastic net regularization:

Pλ(w, ρ) = ρ

(
λ − 1

2
‖w‖2

2 + (2 − λ)‖w‖1

)
(2)

where λ ∈ [1, 2].
(2) promotes sparsity and smoothness through a convex combination of L1 and L2 penalties.
(2) improves the recovery of sharp as well as smooth features of the object.

Optimization Algorithm Implementation

Algorithm 1 Low-rank tensor regression TR(R)(Pλ(w, ρ)).
1: Input: s,L, W , R, λ, ρ, maximum number of iterations kmax (e.g., 100) and stopping criterion

ε (e.g., 10−4).
2: Initialize W 0

d ∈ RK×R, for d = 1, 2.
3: for k = 1, 2, . . . , kmax do
4: W k

1 = min
W1

l(W1, W k−1
2 )

5: W k
2 = min

W2
l(W k

1 , W2)

6: if

∣∣∣l(W k
1 , W k

2 ) − l(W k−1
1 , W k−1

2 )
∣∣∣ < ε then

7: break

8: end if

9: end for

10: Output: construct W using (1) from final W1, W2.

Numerical Experiments: Setup

Ground truth samples (see Fig. 2): a

simple geometric shape consisting of

circle and triangle and a MRI brain image.

Experimental configuration: image

resolution K = 64, of beamlets
|T | = 91 >

√
2K , |Θ| = 30 angles evenly

sampled within [1, 2π].
Error metric: root mean squared error

(RMSE)

Brain MRI

Rank=52

Circle & Triangle

Rank=15

0

0.2

0.4

0.6

0.8

1

Figure 2. Test images and colormap.
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Numerical Experiments: Results
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Figure 3. Reconstructed image of the simple

geometric shape using unregularized TR with

R = 1, . . . , 6, and LSQR.
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Figure 4. Comparison of RMSE with varying numbers of angles

between LSQR and unregularized TR.
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Figure 5. Iterative performance of RMSE provided by LSQR and

TR(5), respectively, for recovering the simple geometric shape.

Top: noise-free data; middle: 1% Gaussian noise-added data;

bottom: 2% Gaussian noise-added data.
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Figure 6. Reconstruction comparison of TR

and LSQR for the MRI brain image. Top:

LSQR; bottom: TR(15)[Enet(2)]. Left:

noise-free data; middle: 1% Gaussian

noise-added data; right: 2% Gaussian

noise-added data.

Conclusion & Discussion

Summary:

Exploited the underlying structure of tomography to better capture its latent multilinear

structure and explored the low-rank approximation of their natural tensor form.

Mitigated the curse of dimensionality, as well as the ill-posedness due to limited data.

In a 2D reconstruction problem, our proposed method outperforms the linear least square

solver. Further, our method is also shown to be more robust to limited number of angles and

increasing levels of added noise.

Future Work

The extension to 3D reconstruction is natural, with potentially more dramatic benefit.

A future direction is to develop a systematic way of optimally choosing the approximation of

the rank so that the computational cost and accuracy is well balanced.
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