
ü Collecting a large number of reliable training images annotated by multiple land-cover class
labels for multi-label classification is time-consuming and costly in remote sensing (RS).

ü To address this problem, publicly available thematic products are often used with zero-
labelling-cost [1]. That may result in noisy training sets, distorting the learning process.

ü To address this problem, we propose a Consensual Collaborative Multi-Label Learning (CCML)
method, which can:

§ identify the possible noisy labels by introducing a novel ranking function for identifying
reliable labels;

§ estimate the label uncertainty based on the aggregation of two collaborative networks;

§ be used within different classification approaches.

The proposed CCML identifies, ranks and corrects training images with noisy multi-labels through
four main modules: 1) discrepancy module; 2) group lasso module; 3) flipping module; and 4)
swap module.

Discrepancy module aims at forcing the two networks to learn diverse features, while achieving
consistent predictions. It includes two loss functions:

ü Disparity loss (𝐿!) ensures that the networks learn distinct features;
ü Consistency loss (𝐿") ensures that the two networks produce similar predictions.

Group Lasso Module aims at identifying:

ü potentially noisy labels in the training set by using the predictions of the two networks.

ü the type of label noise by computing a sample-wise ranking loss as:
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Information about potential noisy labels is provided through a ranking error function as:

𝐸$,$̂(𝐱") = max(0, 2 𝑓$̂ 𝐱" − 𝑓$ 𝐱" + 1)

Flipping module aims at flipping the identified noisy labels and includes:

ü Noisy class selector (NCS) receives the ranking loss from two networks and identifies the
samples with higher uncertainty;

ü Noisy class flipper (NCF) selects the labels with the largest ranking losses to apply the flipping.
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Swap Module aims at exchanging the ranking information between the networks. To this end, it:

ü is inserted between the two collaborative networks;

ü takes the Binary Cross Entropy (BCE) and ranking losses into consideration to eliminate the
detected noisy samples from back-propagation.
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DATASET AND EXPERIMENTAL RESULTS
ü Experiments have been carried out on the Ireland subset of the BigEarthNet [2] benchmark

archive, consisting of 15,894 Sentinel-2 images.

ü Two architectures ResNet [3] and DenseNet [4] were used as baselines for comparison.

ü Noise injection is applied by random selection of n% of samples from each mini-batch, and
flipping randomly n% of the labels from the selected samples.

CONCLUSION
The proposed CCML is promising since it:

ü is able to automatically identify two different types of multi-label noise (i.e., missing and
wrong class label annotations) without making any prior assumption;

ü achieves high accuracy under a high (synthetically added) multi-label noise rates;

ü is architecture-independent, and thus can be used within different network architectures.

As a future development, we plan to extend the proposed CCML with an adaptive ranking loss
function to adjust the amount of sample removal.
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Fig 1. Block diagram of the training phase of the proposed CCML. 𝑓 and 𝑔 represent the two
collaborative networks with parameters 𝜃 and A𝜃, respectively.
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Fig 2. A qualitative example of flipping noisy labels in the flipping module. N implies the
potential noisy class indexes, output of ranking error function.
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Fig 3. A qualitative example to describe the swap module. The two networks exchange the
ranking information.

Injected
Noise
Rate

Precision (%) Recall (%) F1 (%)
Baseline
(ResNet)

Proposed
CCML

Baseline
(ResNet)

Proposed
CCML

Baseline
(ResNet)

Proposed
CCML

20% 87.8 90.2 68.7 68.7 77.1 78
30% 84 88.2 67.2 68.9 74.7 77.4
40% 76.4 88.4 65.1 69.3 70.3 77.7
50% 62.5 87.5 57.6 62.1 60 72.6

Table 1. Results obtained by the proposed CCML and the baseline architecture ResNet.
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Fig 4. Different noise rates versus class based F1 scores obtained by the ResNet
baseline and the proposed CCML for four selected classes.
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1 1 0 0 1 0 0 1 1 0
1 1 0 1 0 1 0 0 1 0
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