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High Dynamic Range Imaging

I Multi-exposure fusion algorithms
merge multiple input low dynamic
range (LDR) images to produce a
single high dynamic range (HDR)
image. However, they suffer from
ghosting artifacts caused by camera
and object motions. Figure 1:Ghosting artifacts.

Low-rank Model

I We construct the observed irradiance matrix

D = [vec(H1), . . . , vec(Hn)] (1)

where Hi is the irradiance computed from the i -th warped LDR image.
I The irradiance matrix D can be decomposed into two matrices,
. X: static background which has a rank-1 structure.
. E: moving objects in the foreground which resembles a sparse matrix

I Exploiting these properties, we employ the truncated nuclear norm [1] to
formulate the fusion task as a rank minimization problem as

minimize
X,E,S

‖X‖r=1 + λ‖E‖1 + f (X) + g(E)

subject to X + E + S = PΩ(D), ‖PΩ(S)‖F ≤ δ,
(2)

where λ is the trade-off parameter, f (·) and g(·) are adaptive priors.

Solutions

I Variable separation for (2)

minimize
X,E,S,P,Q

‖X‖r=1 + λ‖E‖1 + f (P) + g(Q)

subject to P = X,Q = E,
X + E + S = PΩ(D), ‖PΩ(S)‖F ≤ δ.

(3)

I Closed-form solutions by an iterative technique

Xk+1 = arg min
X

L(X,Ek,Sk,Pk,Qk,Λk,Γk,Φk)

Ek+1 = arg min
E

L(Xk+1,E,Sk,Pk,Qk,Λk,Γk,Φk)

Sk+1 = arg min
‖PΩ(S)‖F≤δ

L(Xk+1,Ek+1,S,Pk,Qk,Λk,Γk,Φk)

(4)

where L is the the augmented Lagrangian function derived from (3).

I We learn prior information from the data via CNNs

Pk+1 = arg min
P

L(Xk+1,Ek+1,Sk+1,P,Qk,Λk,Γk,Φk)

= P-Netk
(
Xk+1 + α−1

k Γk

)
,

Qk+1 = arg min
Q

L(Xk+1,Ek+1,Sk+1,Pk+1,Q,Λk,Γk,Φk)

= Q-Netk
(
Ek+1 + β−1

k Φk

) (5)

I The HDR image is computed by weighted average of columns in X̂

R =
1

n

n∑
i=1

ωiX̂i

The Network

Figure 2:The network takes D in (1) as input. For initialization, X1 = PΩ(D) and others are zero matrices. Operations in each iteration correspond to solutions in (4) and (5). The

green and orange blocks in P-Net and Q-Net indicate the convolutional layers and ReLU layers, respectively. The network process image channels separately and the weights are shared.

Experimental Results

I Conventional algorithms produce unfaithful textures since end-to-end learning
algorithms infers them from learned features, which may be different from
those in the ground-truth.

I In contrast, the proposed algorithm faithfully synthesizes HDR images without
texture losses and color artifacts by strictly constraining low-rank priors with
learned regularizers.

(a) Ground-truth (b) TNNM-ALM [1] (c) Kalantari et al.[2]

(d) Wu et al.[3] (e) Yan et al.[4] (f) The proposed algorithm

Figure 3:Comparison of the HDR synthesis results.
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