h Dynamic Range Imaging

Multi-exposure fusion algorithms merge multiple input low dynamic range (LDR) images to produce a single high dynamic range (HDR) image. However, they suffer from ghosting artifacts caused by camera and object motions.

Figure 1: Ghosting artifacts.

We construct the observed irradiance matrix $\mathbf{D} = [vec(\mathbf{H}_1), \ldots, vec(\mathbf{H}_n)]$ where \mathbf{H}_i is the irradiance computed from the *i*-th warped LDR image. ► The irradiance matrix **D** can be decomposed into two matrices, > X: static background which has a rank-1 structure. **E**: moving objects in the foreground which resembles a sparse matrix Exploiting these properties, we employ the truncated nuclear norm [1] to formulate the fusion task as a rank minimization problem as minimize $\|\mathbf{X}\|_{r=1} + \lambda \|\mathbf{E}\|_1 + f(\mathbf{X}) + g(\mathbf{E})$ X.E.S subject to $\mathbf{X} + \mathbf{E} + \mathbf{S} = \mathcal{P}_{\mathbf{\Omega}}(\mathbf{D}), \|\mathcal{P}_{\mathbf{\Omega}}(\mathbf{S})\|_{\mathsf{F}} \leq \delta$, where λ is the trade-off parameter, $f(\cdot)$ and $g(\cdot)$ are adaptive priors.

Jetworl

(1)

(2)

Figure 2: The network takes **D** in (1) as input. For initialization, $X_1 = \mathcal{P}_{\Omega}(D)$ and others are zero matrices. Operations in each iteration correspond to solutions in (4) and (5). The green and orange blocks in P-Net and Q-Net indicate the convolutional layers, respectively. The network process image channels separately and the weights are shared.

http://cilab.dongguk.edu/

Ghost-free HDR Imaging via Unrolling Low-Rank Matrix Completion Truong Thanh Nhat Mai[†], Edmund Y. Lam[‡], and Chul Lee[†]

[†]Department of Multimedia Engineering, Dongguk University, Seoul, Korea [‡]Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong E-mails: mtntruong@mme.dongguk.edu, elam@eee.hku.hk, chullee@dongguk.edu

 $\leq \delta$. $, \boldsymbol{\Gamma}_k, \boldsymbol{\Phi}_k)$

(3)

- rived from (3). $_{k},\mathbf{\Phi}_{k})$
- (5) Γ_k, Φ_k)

columns in $\widehat{\mathbf{X}}$

Experimental Resul

- those in the ground-truth.
- learned regularizers.

- Sep. 2016.
- ACM Trans. Graph., vol. 36, no. 4, pp. 144:1-144:12, Jul. 2017.
- Vis. Pattern Recognit., Jun. 2019, pp. 1751-1760.

Paper ID: 1512

Conventional algorithms produce unfaithful textures since end-to-end learning algorithms infers them from learned features, which may be different from

► In contrast, the proposed algorithm faithfully synthesizes HDR images without texture losses and color artifacts by strictly constraining low-rank priors with

Figure 3: Comparison of the HDR synthesis results.

[1] C. Lee and E. Y. Lam, "Computationally efficient truncated nuclear norm minimization for high dynamic range imaging," IEEE Trans. Image Process., vol. 25, no. 9, pp. 4145-4157,

[2] N. K. Kalantari and R. Ramamoorthi, "Deep high dynamic range imaging of dynamic scenes,"

[3] S. Wu, J. Xu, Y.-W. Tai, and C.-K. Tang, "Deep high dynamic range imaging with large foreground motions," in Proc. Euro- pean Conf. Comput. Vis., Sep. 2018, pp. 120-135. [4] Q. Yan, D. Gong, Q. Shi, A. van den Hengel, C. Shen, I. Reid, and Y. Zhang, "Attentionguided network for ghost-free high dynamic range imaging," in Proc. IEEE Conf. Comput.

