

POINT CLOUD GEOMETRY COMPRESSION VIA NEURAL GRAPH SAMPLING

Linyao Gao, Tingyu Fan, Yiling Xu*, Jun Sun Jianqiang Wang, Zhan Ma Shanghai Jiao Tong University Nanjing University

linyaog@sjtu.edu.cn

饮水思源•爱国荣校

Background

Emerging 3D Applications

- Augmented reality
- Autonomous driving

D Point Cloud

Augmented Reality

Autonomous Driving

- A set of points consists of geometry and attribute information
- A 3D representation of real-life 3D objects and scenes

□ Challenges for Geometry Compression

- A huge amount of data
- Irregular and unordered

3D Scene

3D Object

How to compress point clouds efficiently and effectively?

Motivations

Volume-based Methods

- 3D CNN based Compression Network[1]
 - Preprocessing: Voxelization
 - 3D CNN based Transformation
 - Distortion: Occupancy Classification loss

Drawbacks: High Space&Time Complexity $O(N^3)$

- **3D Sparse CNN based Compression Network**[2]
 - Preprocessing: Voxelization
 - 3D Sparse CNN based Transformation
 - Hierarchical Reconstruction
 - Distortion: Occupancy Classification Loss

Drawbacks: Inefficient for Sparse Point Cloud

Volume-based methods shows unprecedented coding gains than MPEG V-PCC and G-PCC which utilize the traditional coding tools for dense point cloud compression!

[1] Wang J, Zhu H, Liu H, et al. Lossy point cloud geometry compression via end-to-end learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021. [2] Wang J, Ding D, Li Z, et al. Multiscale Point Cloud Geometry Compression[C]//2021 Data Compression Conference (DCC). IEEE, 2021: 73-82.

Motivations

Point-based Methods

- PointNet based Compression Network[1]
 - Input Raw Points
 - PointNet based Autoencoder Structure
 - Distortion: Chamfer Distance Loss

Drawbacks: Cannot Capture Local Geometry Relationship

- PointNet++ based Compression Network[2]
 - Input Raw Points
 - PointNet++ based Autoencoder Structure
 - Hierarchical Reconstruction
 - Distortion: Chamfer Distance Loss

Drawbacks: High Computational Complexity with FPS

Point-based methods shows ability to process sparse point cloud and outperform the SOTA MPEG G-PCC at low bit rates!

[1] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al., "Deep autoencoder-based lossy geometry compression for point clouds," arXiv preprint arXiv:1905.03691, 2019.
[2] Tianxin Huang and Yong Liu, "3d point cloud geometry compression on deep learning," in ACM International Conference on Multimedia, 2019.

□ How to improve?

- To well exploit the local geometric correlation
 - Construct the local graph of each point
 - Aggregating neighbor information of each point

Enrich the representation of original point clouds

- To reduce computation complexity of sampling
 - Low complexity down-sampling operation
 - Matrix parallel process

Lower computational complexity during sampling

□ Proposed Neural Graph Sampling(NGS) Module

- **Local Graph Construction:** Search for KNN to construct local graph of each point
- **Graph Feature Embedding:** Propose **Dynamic Filtering** to aggregating neighbor information
- Attention based Sampling: Select a representative subset of points to reduce spatial redundancy

□ Autoencoder based E2E compression pipeline

- **Encoder:** Exploit stacked NGS Module to extract and aggregate local features
- **Entropy Engine:** Utilize hyperpriors for accurate entropy modeling of latent features
- Decoder: Layered deconvolutions for refining progressively the reconstructed point cloud
- Loss Function: Chamfer Distance loss for distortion and RDO

Results

Experiment settings

- Dataset
 - Training: ShapeNetCoreV2 train dataset
 - Test: ShapeNetCoreV2 test dataset
- Anchor
 - PointNet based Autoencoder Structure[1]
 - PointNet++ based Autoencoder Structure[2]
 - MPEG G-PCC
- Objective Metrics
 - Point-to-point Distance (D1)
 - Point-to-plane Distance (D2)

D Performance Evaluation

Our method's total test time of encoding and decoding process is much faster than [2] with FPS.

Table: Average test time comparison

Method	Yan	Huang(VAE)	Ours
Test time	0.004s	0.291s	0.016s

D Performance Evaluation

- Compared with other point-based learning PCC methods, our proposed method achieves the best performance.
- Table: BD-Rate Gains against other point-based methods using D1 and D2 distortion measurements.

Class	Ours vs Yan		Ours vs Huang(VAE)	
	D1	D2	D1	D2
Airplane	-68.15	-70.74	-38.80	-52.29
Pistol	-75.17	-86.30	-30.27	-59.00
Table	-70.11	-68.75	-39.35	-51.98
Chair	-65.12	-62.14	-39.14	-52.23
Average	-69.63	-71.98	-36.89	-53.87
Overall	-74.38	-68.33	-49.01	-56.44

Compared with all the anchors, our method achieves lower bit rate at almost the same PSNR.

[1] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al., "Deep autoencoder-based lossy geometry compression for point clouds," arXiv preprint arXiv:1905.03691, 2019.
[2] Tianxin Huang and Yong Liu, "3d point cloud geometry compression on deep learning," in ACM International Conference on Multimedia, 2019.

Conclusion

Contributions

- Introduce a three-step Neural Graph Sampling (NGS) to well exploit the unconstrained geometric correlation of input point cloud.
- The proposed method is more computational and memory efficient than the previous point-based E2E point cloud geometry compression methods.
- The proposed method achieves > 49% BD-Rate gains over the SOTA point cloud compression method.

Given States Future works

- Extend this work to sparse large-scale point cloud geometry compression.
- Extend this work to compress point cloud attributes .

