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Background
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O Emerging 3D Applications
B Augmented reality

B Autonomous driving

O Point Cloud Augmented Reality
B A set of points consists of geometry and attribute information

B A 3D representation of real-life 3D objects and scenes

O Challenges for Geometry Compression
B A huge amount of data

B [rregular and unordered

3D Scene 3D Object

How to compress point clouds efficiently and effectively?
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Motivations

O Volume-based Methods R
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Drawbacks: High Space&Time Complexity O(N3) t t
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B 3D Sparse CNN based Compression Network[2]
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Drawbacks: Inefficient for Sparse Point Cloud

Volume-based methods shows unprecedented coding gains than MPEG V-PCC and G-PCC

which utilize the traditional coding tools for dense point cloud compression! %
7 1 N\TA T

[1] Wang J, Zhu H, Liu H, et al. Lossy point cloud geometry compression via end-to-end learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021.
[2] Wang J, Ding D, Li Z, et al. Multiscale Point Cloud Geometry Compression[C]//2021 Data Compression Conference (DCC). IEEE, 2021: 73-82.




Motivations
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O Point-based Methods
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B PointNet++ based Compression Network|[2]
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Drawbacks: High Computational Complexity with FPS s el S B e

Point-based methods shows ability to process sparse point cloud and outperform the SOTA

MPEG G-PCC at low bit rates!

7/ U N\T7 7S

[1] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al., “Deep autoencoder-based lossy geometry compression for point clouds,” arXiv preprint arXiv:1905.03691, 2019.
[2] Tianxin Huang and Yong Liu, “3d point cloud geometry compression on deep learning,” in ACM International Conference on Multimedia, 2019.




Proposed Method

O How to improve?

B To well exploit the local geometric correlation
» Construct the local graph of each point
e Aggregating neighbor information of each point
Enrich the representation of original point clouds

B To reduce computation complexity of sampling
 Low complexity down-sampling operation
o Matrix parallel process

Lower computational complexity during sampling

Down

Sampling O
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Proposed Method
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O Proposed Neural Graph Sampling(NGS) Module
B L|ocal Graph Construction: Search for KNN to construct local graph of each point
B Graph Feature Embedding: Propose Dynamic Filtering to aggregating neighbor information
B Attention based Sampling: Select a representative subset of points to reduce spatial redundancy
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Proposed Method

O Autoencoder based E2E compression pipeline
B Encoder: Exploit stacked NGS Module to extract and aggregate local features
B Entropy Engine: Utilize hyperpriors for accurate entropy modeling of latent features
B Decoder: Layered deconvolutions for refining progressively the reconstructed point cloud
B Loss Function: Chamfer Distance loss for distortion and RDO
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Results

O Experiment settings O Performance Evaluation
m  Dataset B Compared with other point-based learning PCC methods, our
e  Training: ShapeNetCoreV2 train dataset proposed method achieves the best performance.
« Test: ShapeNetCoreV2 test dataset Table: BD-Rate Gains against other point-based methods using D1 and D2 distortion measurements.
B Anchor Class QOurs vs Yan Ours vs Huang(VAE)
DI D2 DI D2

» PointNet based Autoencoder Structure[1] Aiplane -68.15 7074 -38.80 5229

» PointNet++ based Autoencoder Structure[2] Pistol ~ -75.17 -86.30 -30.27 -59.00

Table  -70.11 -68.75 -39.35 -51.98

* MPEG G-PCC Chair  -65.12 -62.14 -39.14  -52.23

B Objective Metrics Average -69.63 -71.98 -36.89 -53.87

*  Point-to-plane Distance (D2) B Compared with all the anchors, our method achieves lower bit rate at

O Performance Evaluation almost the same PSNR.
_ _ _ Ground Truth G-PCC(Octree) Yan Huang(VAE) Ours
O Our method's total test time of encoding and decoding ‘ ' Sl ﬁ ’m n @ @
process is much faster than [2] with FPS. R YL 01711bpp 0 A7 230pp $ Asatiny
) A D1-PSNR:32.6486 D1-PSNR:33.9479 D1-PSNR:33.6058 D1-PSNR:33.6815
Table: Average test time comparison D2-PSNR:37.7447 D2-PSNR:37.2276 D2-PSNR:36.6784 D2-PSNR:39.9222
b N saauizegEE W g “ sl n% q
Method Yan  Huang(VAE) Ours : " ' : '
0.5352bpp 0.1851bpp 0.1116bpp 0.1097bpp
Test time  0.004s 0.291s 0.016s DoPONRA1 000  DIPSNR43TE0S  DIPSNRAA4BH mepenm ey
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Conclusion

O Contributions

B Introduce athree-step Neural Graph Sampling (NGS) to well exploit the unconstrained geometric

correlation of input point cloud.

B The proposed method is more computational and memory efficient than the previous point-based E2E
point cloud geometry compression methods.

B The proposed method achieves > 49% BD-Rate gains over the SOTA point cloud compression method.

O Future works
B Extend this work to sparse large-scale point cloud geometry compression.

B Extend this work to compress point cloud attributes .
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