IEEE ICIP 2021 **Paper ID: 1261**

INTERFRAME-DEPENDENT RATE-QP-DISTORTION MODEL FOR VIDEO CODING AND TRANSMISSION

Context - Motivation

Rate control in video coding, is crucial to meet strict rate constraints imposed by **ultra-low latency streaming** (e.g. remote surgery or remote driving).

Goal: Excellent match between the encoding rate and the transmission rates.

Contribution : New model of the relation between R_n and QP_n depending on the Mean Square Error (MSE) distortion D_{n-1} for the reference frame n.

Inter-Dependent R-(QP,D) Mo

The rate R_n and QP_n of the n-th frame depends on D_{n-1} .

Fig. 1: R_n for the frames n = 79 and 131 of *ParkScene* as a function of D_{n-1} for different values of QP_n . We propose the following R-(QP,D) model:

$$R_{n}(QP_{n}, D_{n-1}) = g_{1}(QP_{n}) + g_{2}(QP_{n}) (\tanh(g_{3}(QP_{n})\log(D_{n-1}) - g_{4}(QP_{n})) + 1),$$
(9)

Mourad AKLOUF^{1,2}, Marc LENY², Michel KIEFFER¹ and Frederic DUFAUX¹

¹Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, F-91192 Gif-sur-Yvette ²EKTACOM, F-91940 Les Ulis ¹{mourad.aklouf, michel.kieffer, frederic.dufaux}@l2s.centralesupelec.fr, ²mleny@ektacom.com

with,

 $g_1(QP_n) = p_1 \exp\left(-p_2\right)$ $g_2(QP_n) = p_3(-p_4 log(Q))$ $g_3(QP_n) = p_5QP$ $g_4(QP_n) = (p_6QP_n - p_7)^2$

The performance of the proposed model is compared to (1), (2) and (3), used at a frame level.

Experiment 1: Constant QP coding

Fig. 2: Histogram of prediction errors for *Tango* at high bitrates.

The proposed model provides the best performance at high bitrates. The performance slightly decreases in low bitrates, but significantly outperforms the three other models.

$$(P_2 Q P_n)$$

 $(P_n) + 1)$
 $(P_n)^2$

$$\left(\frac{p_1}{Q_k^2} + \frac{p_2}{Q_k}\right), \qquad (1)$$

$$p_2.$$
 (2)

$$\frac{\sigma_k^2}{Q_k^2}.$$
 (3)

Conclusion

- The proposed model outperforms other models in the literature in both constant QP coding and with frame-dependent QP. - The gains tend to be more significant at low bitrates.

Fig. 3: Average error CDF with constant QP.

Experiment 2: Time-varying QPs.

Fig. 4: Error CDF with first-order Markov process variations of QP for each sequences.