INTERFRAME-DEPENDENT RATE-QP-DISTORTION MODEL FOR VIDEO CODING AND TRANSMISSION

Mourad AKLOUF, Marc LENY, Michel KIEFFER, Frédéric DUFAUX

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, F-91192 Gif-sur-Yvette EKTACOM, F-91940 Les Ulis

{mourad.aklouf, michel.kieffer, frederic.dufaux}@l2s.centralesupelec.fr, mleny@ektacom.com

IEEE ICIP 19-22 September 2021

Context - Motivation

Rate control is crucial to meet strict rate constraints in Ultra-low latency live streaming.

remote surgery

remote driving

sport events

Context - Motivation

Evolution of the end-to-end delay for video sequence encoding in 600kbps.

 Excellent match between encoding rate and transmission rates requires a frame-level model of encoding rate as a function of the quantization parameter.

We propose a new model of the relation between R_n and QP_n depending on the Mean Square Error (MSE) distortion D_{n-1} for the reference frame n.

For frame n, R_n depends on QP_n and D_{n-1} .

For a given QP_n , R_n increases :

- slowly when D_{n-1} is small,
- fast when D_{n-1} is large.

 R_n for the frames n = 79 and 131 of *ParkScene* as a function of D_{n-1} for different values of QP_n .

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 う(21)

We propose the following R-(QP,D) model:

$$R_n(QP_n, D_{n-1}) = g_1(QP_n) + g_2(QP_n)(\tanh(g_3(QP_n)\log(D_{n-1}) - g_4(QP_n)) + 1), \quad (1)$$

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where,

- $R_n(QP_n, D_{n-1}) = g_1(QP_n)$ when D_{n-1} is very small.
- $R_n(QP_n, D_{n-1}) = g_2(QP_n)(\tanh(g_3(QP_n)\log(D_{n-1}) g_4(QP_n)) + 1)$ when D_{n-1} is very large.

 g_1 as a function of QP_n for frame 79 of ParkScene.

$$g_1(QP_n) = p_1 \exp\left(-p_2 QP_n\right)$$

$$\begin{aligned} R_n^0(QP_n, D_{n-1}) &= R_n(QP_n, D_{n-1}) - g_1(QP_n) \\ &= g_2(QP_n)(\tanh(g_3(QP_n)\log(D_{n-1}) - g_4(QP_n)) + 1) \end{aligned}$$

A least-squares estimation of g2, g3, and g4 is performed using R_n^0 .

 R_n^0 for frame n = 79 of *ParkScene* as a function of D_{n-1} for different values of QP_n .

イロト イロト イヨト イヨト 二日

28/21

- $g_2(QP_n) = p_3(-p_4 \log(QP_n) + 1)$
- $g_3(QP_n) = p_5 QP_n$
- $g_4(QP_n) = (p_6QP_n p_7)^2$

 \hat{g}_2 , \hat{g}_3 , and \hat{g}_4 as a function of QP_n or log (QP_n) for frame 79 of *ParkScene*

In summary :

$$R_n(QP_n, D_{n-1}) = g_1(QP_n) + g_2(QP_n)(\tanh(g_3(QP_n)\log(D_{n-1}) - g_4(QP_n)) + 1)$$
(9)

with,

$$g_1(QP_n) = p_1 \exp(-p_2 QP_n)$$

$$g_2(QP_n) = p_3(-p_4 \log(QP_n) + 1)$$

$$g_3(QP_n) = p_5 QP_n$$

$$g_4(QP_n) = (p_6 QP_n - p_7)^2$$

□ > < ⊕ > < ≧ > < ≧ > < ≧ > < ≧ > < 10/21

Performance Evaluation

The proposed model is compared to models (1), (2) and (3), used at a frame level.

Choi et al.¹: $R_{k} = M \cdot N \cdot MAD_{k} \cdot \left(\frac{p_{1}}{Q_{k}^{2}} + \frac{p_{2}}{Q_{k}}\right)$ (1) Ma et al.², Li et al.³: $R_{k} = p_{1}\frac{SAD_{k}}{Q_{k}} + p_{2}$ (2) Yang et al.⁴: $R_{k} = p_{1} \cdot M \cdot N \frac{\sigma_{k}^{2}}{Q_{k}^{2}}$ (3)

¹H. Choi, J. Yoo, J. Nam, et al., "Pixel-wise unified rate-quantization model for multi-level rate control," *IEEE Journal in Signal Processing*, 2013.

²S. Ma, W. Gao, and Y. Lu, "Rate-distortion analysis for H.264/AVC video coding and its application to rate control," IEEE transactions on circuits and systems, 2005.

³Y. Li, H. Jia, P. Ma, et al., "Inter-dependent rate-distortion modeling for video coding and its application to rate control,", IEEE, 2014.

⁴X. Yang, Y. Tan, and N. Ling, "Rate control for H.264 with two-step quantization parameter determination but single-pass encoding," EURA SIP Journal; 2006: 🛬 🕨

Experimental Setup

- Tested sequences: Tango, Racehorses, ParkScene and Magnycours.
- Encoder: x265 software⁵.
- Low delay configuration + Intra-refresh (cycle of one second).

⁵MulticoreWare, X265 software documentation, https://x265.readthedocs.io/en/master/, 2020.

Experiment 1: Coding at constant QP

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Performance at high bitrates coding

The proposed model provides the best performance at high bitrates:

- In fig (a), Model (9) errors: -13.6% to 14%,
 In fig (b) and (c), Models (1) and (2) errors: -11% to 19%,
- In fig (d), Model (3) errors: -50% to 64%.

Performance at low bitrates coding

The proposed model significantly outperforms the three other models :

- In fig (a), (9) errors : -28.6% to 18.3%, • In fig (b) and (c), Model (1) and (2) errors : 0% to 81% ,
- In fig (d), Model (3) errors : -90% to -58%.

Histogram of prediction errors for Tango at low bitrates. \bigcirc , (b, (b), ($\rule{b})$, (($\rule{b})$, ($\rule{b})$, (($\rule{b})$, (($\rule{b})$, (($\rule{b})$, (($\rule{b})$

CDF of prediction errors - Magnycours

The proposed model achieves the lowest prediction error.

With QPn=20: 90% of the prediction errors are less than:

- 12.2% in Model (9).
- 16.7% and 22.6% in Model (1) and (2) respectively
- 51.8% in Model (3).

CDF of prediction errors for Magnycours sequence.

Average error CDF with constant QP

The proposed model achieves the best performance for all test sequences.

Average error CDF with constant $\ensuremath{\textit{QP}}$ for each

sequence.

Experiment 2: Coding at time-varying QPs

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Performance with time-varying QPs

The proposed model outperforms the other ones for all sequences.

Error CDF with first-order Markov process variations of *QP* for each sequences.

- **Contribution** : A new model of the relation between R_n and QP_n depending on D_{n-1} .
- \bullet The proposed model outperforms the other models in both constant QP coding and variable QP coding.
- The gains with our model tend to be more significant at low bitrates.
- **Future work :** Integration of the proposed model in a rate control algorithm for Ultra low-latency video streaming.

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions ?

Mourad AKLOUF mourad.aklouf@l2s.centralesupelec.fr

