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Context - Motivation

Rate control is crucial to meet strict rate constraints in Ultra-low latency live streaming.

remote surgery remote driving sport events
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Context - Motivation

Evolution of the end-to-end delay for video sequence encoding in 600kbps.

Frame indx

0 100 200 300 400 500 600

[K
b

p
s
]

200

400

600

800

1000

1200

1400
Transmission Rate

Transmission Rate

Encoding Rate

Frame indx

0 100 200 300 400 500 600

[m
s
]

0

500

1000

1500

2000

2500
End-To-End Delay 

End-To-End Delay

The mismatch between the encoding rate and available bandwidth
may lead to an increase of the delay.
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Context - Motivation

Excellent match between encoding rate and transmission rates requires
a frame-level model of encoding rate as a function of the quantization parameter.

We propose a new model of the relation between Rn and QPn depending on the Mean Square
Error (MSE) distortion Dn−1 for the reference frame n.
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Inter-Dependent R-(QP,D) Model

For frame n, Rn depends on QPn and Dn−1.

For a given QPn, Rn increases :

slowly when Dn−1 is small,

fast when Dn−1 is large.
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Rn for the frames n = 79 and 131 of ParkScene as
a function of Dn−1 for different values of QPn.
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Inter-Dependent R-(QP,D) Model

We propose the following R-(QP,D) model:

Rn (QPn,Dn−1) = g1 (QPn) + g2 (QPn) (tanh (g3 (QPn) log(Dn−1) − g4 (QPn)) + 1) , (1)

where,

• Rn(QPn,Dn−1) = g1(QPn) when Dn−1 is very small.

• Rn(QPn,Dn−1) = g2 (QPn) (tanh (g3 (QPn) log(Dn−1) − g4 (QPn)) + 1) when Dn−1 is very large.
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Inter-Dependent R-(QP,D) Model.

g1(QPn) = p1 exp (−p2QPn)
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g1 as a function of QPn for frame 79 of ParkScene.
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Inter-Dependent R-(QP,D) Model.

R0
n (QPn,Dn−1) = Rn (QPn,Dn−1) − g1 (QPn)

= g2 (QPn) (tanh (g3 (QPn) log(Dn−1) − g4 (QPn)) + 1)

A least-squares estimation of g2, g3, and g4 is performed
using R0

n .
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Inter-Dependent R-(QP,D) Model.

g2(QPn) = p3(−p4log(QPn) + 1)

g3(QPn) = p5QPn

g4(QPn) = (p6QPn − p7)2
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Inter-Dependent R-(QP,D) Model.

In summary :

Rn (QPn,Dn−1) = g1 (QPn) + g2 (QPn) (tanh (g3 (QPn) log(Dn−1) − g4 (QPn)) + 1) (9)

with,
g1(QPn) = p1 exp (−p2QPn)

g2(QPn) = p3(−p4log(QPn) + 1)

g3(QPn) = p5QPn

g4(QPn) = (p6QPn − p7)2
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Performance Evaluation

The proposed model is compared to models (1) , (2) and (3), used at a frame level.
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Yang et al.4:
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(3)
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Experimental Setup

Tested sequences: Tango, Racehorses, ParkScene and Magnycours.

Encoder: x265 software5.

Low delay configuration + Intra-refresh (cycle of one second).

5MulticoreWare, X265 software documentation, https://x265.readthedocs.io/en/master/, 2020.
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Experiment 1:
Coding at constant QP
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Performance at high bitrates coding

The proposed model provides the best
performance at high bitrates:

• In fig (a), Model (9) errors: -13.6% to 14%,
• In fig (b) and (c), Models (1) and (2) errors:
-11% to 19%,
• In fig (d), Model (3) errors: -50% to 64%.

Histogram of prediction errors for Tango at high
bitrates.
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Performance at low bitrates coding

The proposed model significantly outperforms
the three other models :

• In fig (a), (9) errors : -28.6% to 18.3%,
• In fig (b) and (c), Model (1) and (2) errors :
0% to 81% ,
• In fig (d), Model (3) errors : -90% to -58%.

Histogram of prediction errors for Tango at low
bitrates.
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CDF of prediction errors - Magnycours

The proposed model achieves the lowest prediction
error.

With QPn= 20: 90% of the prediction errors are less than:

• 12.2% in Model (9).
• 16.7% and 22.6% in Model (1) and (2) respectively
• 51.8% in Model (3).
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CDF of prediction errors for Magnycours sequence.
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Average error CDF with constant QP

The proposed model achieves the best performance
for all test sequences.
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Experiment 2:
Coding at time-varying QPs
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Performance with time-varying QPs

The proposed model outperforms the other ones for
all sequences.
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Conclusion

• Contribution : A new model of the relation between Rn and QPn depending on Dn−1.

• The proposed model outperforms the other models in both constant QP coding and variable
QP coding.

• The gains with our model tend to be more significant at low bitrates.

• Future work : Integration of the proposed model in a rate control algorithm for Ultra
low-latency video streaming.
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Questions ?

Mourad AKLOUF
mourad.aklouf@l2s.centralesupelec.fr
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