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ABSTRACT

No-reference (NR) image sharpness assessment is an impor-
tant issue for image quality assessment and algorithm per-
formance evaluation. Many objective NR sharpness assess-
ment metrics have been proposed which are often intended to
be strongly associated with the human visual system (HVS).
However, recent studies show that common sharpness assess-
ment indicators may misjudge the degree of blurring for im-
ages with shallow depth of field that are often used to high-
light the main subject in the view. This paper proposes an effi-
cient no-reference objective image sharpness assessment met-
ric based on the product of bidirectional pixel intensity differ-
ences that is computed block-by-block (PBDB). This paper
contributes the following: (1) the sharpness of shallow depth-
of-field images can be accurately evaluated with the proposed
algorithm when traditional methods do not work well. (2) Ex-
perimental results on three public datasets demonstrate com-
petitiveness and effectiveness of the proposed algorithm when
compared with several state-of-the-art methods.

Index Terms— Shallow Depth-of-Field Images, Image
Sharpness Assessment, Image Block, Image Quality Assess-
ment

1. INTRODUCTION

The sharpness of an image determines the amount of detail
that an imaging system can present, and it is one of the most
significant factors affecting the quality of an image. Sub-
jective image quality metrics are considered the most reli-
able results in image assessment. Although subjective qual-
ity assessment methods can provide assessment results in line
with human vision, subjective quality assessment methods
still have high evaluation costs, low efficiency and other is-
sues [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Therefore, based on
the subjective nature of visual quality perception, to develop
an accurate blind image quality assessment method becomes
a challenging research topic. In recent years, researchers have
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Fig. 1. (a) and (c) are pictures with shallow depth of field to
highlight the subject. (b) and (d) are overall blurred pictures
(the blur degree of the distant view is not as good as that in
picture(a) and (c)).

proposed related artificial intelligence algorithms, but they
still face the problem of high data collection and calculation
costs [9, 10].

A telephoto lens or a wide aperture lens can make the sub-
ject in a cluttered environment stand out. Photographers often
push this effect further by using a very shallow depth of field
while shooting, which blurs out everything unimportant and
highlights the subject extremely well. The above-mentioned
different types of lenses can get their shallow depth-of-field
images respectively. The shallow depth-of-field images often
exist in art, science, and daily life, so their sharpness assess-
ment cannot be neglected.

Classic Image Quality Assessment (IQA) databases, such
as LIVE [13] and TID2013 [14], only cover artificial and
common distortion images, but do not include natural shal-
low depth-of-field images. Fig. 1.illustrates two types of
photos for the same subject, in which picture (a) and (c) are
two depth-of-field pictures taken by photographers to high-
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Fig. 2. Algorithm framework proposed

light the subject, and picture (b) and (d) are two global blur
pictures (the blur degree of the distant view is not as good as
that in picture(a) and (c)). Most people will think that pic-
ture (a) and (c) are clearer. However, the classic sharpness
assessment algorithms may get the opposite result of HVS.

Scientific research shows that the highest visual acuity in
the human visual system is limited by the size of the foveal
area [2]. The foveal region is composed of an image block of
approximately 64 × 64, which covers a view angle of about
α = 2, and is covered with cone cells for detecting bright-
ness and color [2, 15, 16]. In this area, smooth blocks will
be excluded because they do not cause blur. If the images
with blurred background and clear foreground are considered,
the clear foreground such as human faces attract people’s vi-
sual attention, and then the correlation between the classic
no-referenced sharpness indicators and the subjective scores
will decrease [1, 2, 15, 16, 17].

To this end, this paper proposes a new no-referenced ob-
jective image sharpness assessment algorithm based on the
square of block energy difference product, which can as-
sess the sharpness of shallow depth-of-field images. Then,
a dataset with shallow depth-of-field images is built for the
sharpness assessment, and two comparative experiments are
carried out for the assessment. And finally the paper presents
experiment result from the proposed algorithm and other al-
gorithms, which verifies the proposed algorithm’s accuracy
and universality.

2. PROPOSED METRIC

A new metric is proposed in this section to assess the sharp-
ness of the shallow depth-of-field images. Studies show that
the large changes in pixel intensity can indicate sharpness
more than the small changes [5]. The difference product of
gray values is used to amplify this difference and obtain ex-
cellent results. Fig. 2 shows the proposed algorithm frame-
work. The specific implementation steps are as follows:

2.1. Grayscale block processing
Given a color image, we first obtain the gray scale matrix of
the image for its assessment.

2.2. Local difference product matrix
For each pixel f(x, y), calculate the gray value difference be-
tween the pixel and its adjacent pixel in x-axis, so does it in
y-axis. The absolute product of the two value differences for
each pixel on x-axis and y-axis represents the local sharpness
index q(x, y) of the pixel, and the formula is:
q(x, y) = |[f(x, y)− f(x+ 1, y)]× [f(x, y)− f(x, y + 1)]|

(1)
For further discussion, the following situations may be

encountered when the difference product on the x-axis and
y-axis is used:

a. Small value ∗ Small value = Small value.
b. Large value ∗ Large value = Large value.
c. Small value ∗ Large value = Moderate value.
From the above three situations, the product will have a

wider range. The absolute value of the gray value difference
between the pixel and its adjacent pixel is in the range of
0–255, thus the value range of q(x, y) 0–65025. We choose
small values such as 1 and large values 255 as examples. In
situation a, the product of the two small values is 1, which is
still a very small value. In situation b, the product of the two
large values is a very large value 65025. And in situation c,
the product of a large value and a small value is a moderate
value 255. Compared with using one gray value difference
alone or adding two gray value differences, multiplication en-
larges the gap between a larger difference value and a smaller
one. At the same time, it enriches the contribution of a larger
difference value to q(x, y). Since the human visual system is
more sensitive to the areas with large changes, the product of
q(x, y) is more suitable for it.

2.3. Sum of q within a block
The grayscale matrix is then divided into multiple k× k pixel
matrix blocks, the default value is 4, and the total number
of matrix blocks is recorded as M × N . Because the image
statistical characteristics are spatially non-stationary, and the
image distortion is also spatially variable, the recommended
block size is 3× 3 and not greater than 6× 6. The definition
index of each pixel matrix block is numbered Qmn. The sum
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Fig. 3. Part of the experimental pictures shot by telephoto
lens

of the local definition index q of each pixel in a certain pixel
matrix block is calculated and recorded as the definition index
Qmn of the matrix block. The formula for calculating the
definition index Qmn of the pixel matrix block is:

Qmn =
mk∑

x=(m−1)k+1

nk∑
y=(n−1)k+1

q(x, y) (2)

where m = 1, . . . ,M and n = 1, . . . , N for an image of
size Mk×Nk. And q(x, y) represents the local definition of
the pixel in the x-axis and y-axis of the current image.

2.4. Calculate the sum of squares of each block Qmn
The formula for calculating the square sum of the definition
index Qm for all matrix blocks is:

V =
1

MN

M∑
m=1

N∑
n=1

Q2
mn (3)

Among them, MN is the total number of matrix blocks,
V representing the sharpness score of the entire picture.

For shallow depth of field images, which are partially
clear and used to highlight the subject, the clearer regions
contribute more sensibility than the smooth regions to HVS
[15, 16]. The square of the block definitionQmn index further
amplifies the degree of local change on the basis of section
2.2. After the squareQmn of the larger change, the advantage
will be more prominent, while the flatter block will only have
a smaller contribution.

3. EXPERIMENTAL RESULTS

3.1. Experiment Plan

In this part, performance results for our metric are presented.
First, two data sets are selected for testing: for experiment A,
15 sets of shallow depth-of-field pictures taken with a tele-
photo lens are tested used to show how the sharpness of shal-
low depth-of-field images can be accurately evaluated with
the proposed algorithm and how other algorithms fail. For
experiment B, various blur types of image subsets are used
from three large-size LIVE [13], TID2008 [18] and TID2013

[14] databases as testing beds to show how the proposed al-
gorithm outperforms classic algorithms on the three public
datasets with respect to universality and accuracy.

Second, such eight classic no-reference sharpness assess-
ment methods are chosen for comparison as CPBD [3], MLV
[5], Maxpol1, Maxpol2 [11], CurveletQA [7], BRISQUE [4],
NIQE [12] and SSEQ [8].

Third, we refer to the suggestion given by the video qual-
ity experts group (VQEG) [19], and select a nonlinear map-
ping of the prediction results x to the subjective scores using
the 5-parameter mapping function [13] mentioned by HR
Sheikh in 2006 for fitting. We calculate SROCC (Spearman
rank-order correlation coefficient indicates the prediction
monotonicity). And PLCC(Pearson correlation coefficient
indicates the prediction accuracy) are calculated after the pre-
dicted quality scores are passed through a nonlinear logistic
mapping function. The following mapping function is widely
used:

Metric(x) = β1

(
1

2
− 1

1 + eβ2(x−β3)

)
+ β4x+ β5 (4)

where (βi|i = 1, 2, 3, 4, 5) are regression parameters to be
found.

Metric Algorithm failure times

Proposed Metric 0
Laplacian 7
CPBD [3] 7
Variance 6
MLV [5] 1

CurveletQA [7] 4
BRISQUE [4] 8

NIQE [12] 2
SSEQ [8] 12

Maxpol1 [11] 1
Maxpol2 [11] 1

Table 1. The classic NR IQA algorithms evaluate the number
of failures in 15 sets of experimental data

3.2. Experiment Details
3.2.1. Performance Results Using a collection of depth-of-
field pictures taken with a telephoto lens

In experiment A, Canon EOS 5D Mark III, equipped with a
300 mm long focal lens, and fixed f / 5.6, ISO 1250 for out-
door and indoor real shooting data, is chosen. A dataset is cre-
ated, and part of the experimental pictures are shown in Fig. 3.
The experimental pictures is divided into 15 groups, and tri-
pod and light shield equipment are used to ensure the consis-
tency of the shooting distance and shooting environment. Two
pictures are included in each group to show how other algo-
rithms fail. One is a shallow depth-of-field picture with clear
foreground and blurred background to highlight the subject
with the best focus effect, the other a whole blurred in the de-
focus state. For example, in Fig. 1, (a) and (b) are the first ex-
perimental group, and (c) and (d) is the second experimental
group. We select 25 volunteers who have nothing to do with
the project in the research institute. The subjective test pro-
cess, in which evaluation attribute is set to sharpness, strictly
adheres to the Performance Methods in Stimulus-comparison
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Blur Type
DB

Metric
Criterion

Proposed
Metric

CPBD
[3]

MLV
[5]

Curvelet
QA[7]

BRISQUE
[4]

NIQE
[12]

SSEQ
[8]

Maxpol1
[11]

Maxpol2
[11]

Gaussian
blur

Tid2008
PLCC 0.9258 0.9008 0.9224 0.9056 0.6804 0.9248 0.9114 0.9246 0.9166

SROCC 0.9114 0.8975 0.9075 0.9250 0.8290 0.9180 0.9073 0.9130 0.9170

Tid2013
PLCC 0.9339 0.9012 0.9338 0.8688 0.7155 0.8507 0.8841 0.9034 0.8887

SROCC 0.9423 0.8918 0.9200 0.8930 0.8010 0.8660 0.8860 0.8930 0.9030

Live
PLCC 0.9529 0.9383 0.9506 0.8987 0.7831 0.9392 0.9422 0.9357 0.9360

SROCC 0.9579 0.9590 0.9390 0.9301 0.9312 0.9317 0.9514 0.9509 0.9065

JPEG
compression

Tid2008
PLCC 0.9514 0.3146 0.9446 0.8293 0.9384 0.9412 0.8564 0.4846 0.6265

SROCC 0.9206 0.2946 0.9122 0.8880 0.9130 0.9210 0.8530 0.2852 0.6630

Tid2013
PLCC 0.9392 0.4885 0.9395 0.9256 0.9327 0.9325 0.855 0.5314 0.7033

SROCC 0.9139 0.4994 0.9016 0.8790 0.9010 0.9220 0.839 0.3715 0.7110

Live
PLCC 0.9199 0.0538 0.8916 0.8192 0.9295 0.9008 0.9144 0.4989 0.4645

SROCC 0.8792 0.0493 0.8595 0.8059 0.8863 0.8812 0.8723 0.3070 0.2054

JPEG2000
compression

Tid2008
PLCC 0.9307 0.9206 0.9224 0.7726 0.7961 0.8276 0.8380 0.5989 0.6750

SROCC 0.8947 0.8621 0.8751 0.7480 0.7860 0.8260 0.8290 0.4610 0.6160

Tid2013
PLCC 0.9571 0.9435 0.9500 0.8361 0.7849 0.8617 0.8931 0.6387 0.6958

SROCC 0.9353 0.8937 0.9132 0.8000 0.8470 0.8750 0.8890 0.4860 0.6290

Live
PLCC 0.9005 0.9024 0.8975 0.8243 0.9155 0.9152 0.8941 0.5290 0.5737

SROCC 0.8872 0.8920 0.8824 0.8235 0.8902 0.9022 0.8881 0.4304 0.6128

Denoising
Tid2008

PLCC 0.9530 0.8443 0.9401 0.9095 0.7750 0.8219 0.9482 0.6658 0.9119
SROCC 0.9397 0.8660 0.8881 0.886 0.7350 0.7850 0.8970 0.6050 0.8440

Tid2013
PLCC 0.9510 0.8654 0.9443 0.9049 0.7565 0.7925 0.8996 0.4779 0.8682

SROCC 0.9299 0.8724 0.9219 0.8240 0.7610 0.7660 0.8620 0.3210 0.8220
Chromatic
aberrations

Tid2013
PLCC 0.9731 0.8857 0.9717 0.7867 0.7611 0.8344 0.7768 0.6984 0.8605

SROCC 0.9066 0.8130 0.8688 0.7720 0.7450 0.6550 0.8010 0.5640 0.7190
Sparse sampling

and reconstruction
Tid2013

PLCC 0.9527 0.8715 0.9568 0.8260 0.8055 0.8307 0.8769 0.7822 0.8631
SROCC 0.9532 0.8414 0.9330 0.8410 0.7200 0.8480 0.9160 0.6860 0.8110

Table 2. Performance of our method and other classic sharpness assessment metrics about 6 distortion types on three databases

Methods (SC) in ITU-R BT.500-14 [20], and the observer’s
task is to judge which one is the sharper from two pictures
in each group. The sharper picture is marked as 1 and the
less one is marked as 0. In this experiment, classic NR al-
gorithms are chosen to evaluate each group of images. The
number of groups opposite to the subjective assessment re-
sults are chosen in the assessment process of each algorithm.
The maximum is 15, and the minimum is 0.

It can be seen from Table 1 that failures exist in the other
10 algorithms except the proposed. The SSEQ algorithm
fails 12 times, BRISQUE 8 times. The traditional algorithms
Laplacian and variance fail in 7 groups and 6 groups respec-
tively. CPBD fails 7 times, CurveletQA fails 4 groups. The
rest three algorithms of NIQE, MLV, and Maxpol perform
well, but they all have failures, and the failures do not occur
in the same experimental group.

3.2.2. Performance Results for LIVE, TID2008 and TID2013
databases

In experiment B, six blur types of images are chosen, among
which Gaussian blur, JPEG compression, and JPEG2000
compression all appear in LIVE, TID2008 and TID2013, De-
noising in TID2008 and TID2013, Chromatic aberrations and
Sparse sampling and reconstruction in TID2013. The 6 types
of blur selected are highly correlated with the assessment of
clarity. It is worth noting that, in order to ensure the objec-
tivity and fairness of the assessment, the mean opinion scores
(MOS) are normalized in those three databases. The MOS of
a picture is divided by the average of the MOS of all pictures

in the corresponding group, which result in the normalized
MOS of the picture to participate in the fitting.

Table 2 shows, the universality of our algorithm and the
improvement of prediction reliability are obvious for PLCC
or SROCC. Among them, the proposed algorithm for Gaus-
sian blur is ranked first in TID2013, and the top two in another
database. The gap between the proposed algorithm and the
first algorithm in JPEG compression is within 0.01. And in
JPEG2000 compression, the proposed algorithm wins the first
place in TID2008 and TID2013. In Denoising and Chromatic
aberrations, the proposed algorithm ranks the first place. In
Sparse sampling and reconstruction, the proposed algorithm
and MLV are significantly better than other algorithms, and
the proposed algorithm’s SROCC is 2 percentage higher than
that of MLV, which shows the better monotonicity of the pro-
posed algorithm. The results show that the proposed algo-
rithm can effectively improve the accuracy of sharpness as-
sessment when evaluating the sharpness of different blur pic-
tures.

4. CONCLUSION

In this paper, we propose an effective algorithm, based on
the product of bidirectional pixel intensity differences that is
computed block-by-block, which is inspired by the percep-
tion of HVS for sharpness assessment. The newly proposed
algorithm obtains more accurate identification results when
evaluating the shallow depth-of-field images. And the newly
proposed algorithm shows competitive results over the tradi-
tional ones on three public image datasets as well.
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