

A Consensual Collaborative Learning Method for Remote Sensing Image Classification under Noisy Multi-Labels

Ahmet Kerem Aksoy, Mahdyar Ravanbakhsh, Tristan Kreuziger, Begüm Demir

Remote Sensing Image Analysis (RSiM) Group, TU Berlin

IEEE International Conference on Image Processing 2021

Introduction

- Multi-label remote sensing (RS) image scene classification methods aim to automatically assign multiple land-cover class labels to each image.
- Deep neural networks (DNNs) have recently shown a great potential for multi-label classification problems.
- ✓ Most of the DNNs require a large amount of annotated multi-label training samples.

Problem: Collecting annotations is very **costly** in terms of human time/effort and needs **expertise**.

Discontinuous urban fabric Coniferous forest Mixed forest Industrial or commercial units

Discontinuous urban fabric Industrial or commercial units Non-irrigated arable land

Introduction

- Thematic products can be used to generate large scale training sets with zero-labeling-cost, covering wide areas, such as:
 - National scale, e.g., American National Land Cover Dataset, DFD Land Use and Land Cover Product for Germany;
 - Global scale, e.g., Global Land Cover, the ESA CCI-LC product;
 - **Continental scale,** e.g., Corine Land Cover maps at European level.

- G. Jaffrain, C. Sannier, A. Pennec, and H. Dufourmont, "Corine land cover 2012 final validation report," European Environment Agency, Tech. Rep., 2017.
- M. Hovenbitzer, F. Emig, C. Wende, S. Arnold, M. Bock, and S. Feigenspan. "Digital land cover model for Germany–DLM-DE." In Land Use and Land Cover Mapping in Europe, pp. 255-272. Springer, Dordrecht, 2014.
- ESA. Land Cover CCI Product User Guide Version 2. Technical Report, 2017.

credit : land.copernicus.eu

Introduction: Noisy Labels

- ✓ However, thematic maps can produce noisy labels since:
 - 1) Errors in the map due to different the strategies used to generate the map;
 - 2) Changes in land-use/land-cover after the construction of the maps;
 - 3) Geolocation errors due to the residual misalignment between a digital map and a satellite image.

Problem: Training sets with noisy labels are constructed, which can distort the learning process.

- G. Buttner, J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup," The corine land cover 2000 project," EARSeL eProceedings, vol. 3, no. 3, pp. 331–346, 2004.
- C. Paris and L. Bruzzone, "A novel approach to the unsupervised extraction of reliable training samples from thematic products," IEEE Transactions on Geoscience and Remote Sensing, pp. 1–19, 2020.
- G. Jaffrain, C. Sannier, A. Pennec, and H. Dufourmont, "Corine land cover 2012 final validation report," European Environment Agency, Tech. Rep., 2017.

Introduction: Noisy Labels

- ✓ Two types of label noise can be present in a training image with multi-labels:
 - 1. Missing labels;
 - 2. Wrong labels.

Discontinuous urban fabric

Coniferous forest

Mixed forest

Missing label Industrial or commercial units

Discontinuous urban fabric Industrial or commercial units Non-irrigated arable land Wrong label Coniferous forest

✓ Methods that are **robust** to the multi-label **noise** are required.

Aims of the Work

Goals:

- ✓ Automatically identify the samples with noisy labels without any prior assumptions.
- ✓ Train noise-robust classifiers with RS training images under label noise.

Solution:

- ✓ We propose a novel consensual collaborative learning method images (CCML) which can:
 - identify the possible noisy labels by introducing a novel ranking function for identifying reliable labels,
 - estimate the label uncertainty based on the aggregation of two collaborative networks,
 - be used with different classification approaches to detect the potentially noisy labels assigned to the training images with multi-labels.

Proposed Consensual Collaborative Multi-Label Learning (CCML) Method

CCML: Discrepancy Module

- The discrepancy module aims at forcing the two networks to learn diverse features, while achieving consistent predictions.
- ✓ It includes: 1) Disparity loss (L_D) ; and 2) Consistency loss (L_C) .

- \checkmark This module has two main aims:
 - Identify potentially noisy labels in the training set by using the predictions of the two networks.
 - Identify the type of label noise by computing a sample-wise ranking loss as:

- \checkmark This module has two main aims:
 - Identify potentially noisy labels in the training set by using the predictions of the two networks.
 - Identify the type of label noise by computing a sample-wise ranking loss as:

- ✓ This module has two main aims:
 - Identify potentially noisy labels in the training set by using the predictions of the two networks.
 - Identify the type of label noise by computing a sample-wise ranking loss as:

- ✓ This module has two main aims:
 - Identify potentially noisy labels in the training set by using the predictions of the two networks.
 - Identify the type of label noise by computing a sample-wise ranking loss as:

- \checkmark This module has two main aims:
 - Identify potentially noisy labels in the training set by using the predictions of the two networks.
 - Identify the type of label noise by computing a sample-wise ranking loss as:

CCML: Flipping Module

- ✓ The flipping module aims at flipping the identified noisy labels and includes:
 - Noisy class selector (NCS) receives the ranking loss from two networks and identifies the samples with higher uncertainty;
 - Noisy class flipper (NCF) selects the labels with the largest ranking loss to apply the flipping.

	Ranking loss	N	label
From group lasso module <i>f</i>	0.2	4	1
	0.7	1	0
	0.7	7	0
)	0.3	6	0
	0.9	9	1
	Ranking loss	N	label
	0.1	2	0
From group lasso module <i>g</i>	0.7	1	0
	0.9	7	0
	0.2	11	0
	0.6	9	1

CCML: Flipping Module

- ✓ The flipping module aims at flipping the identified noisy labels and includes:
 - Noisy class selector (NCS) receives the ranking loss from two networks and identifies the samples with higher uncertainty;
 - Noisy class flipper (NCF) selects the labels with the largest ranking loss to apply the flipping.

CCML: Flipping Module

- ✓ The flipping module aims at flipping the identified noisy labels and includes:
 - Noisy class selector (NCS) receives the ranking loss from two networks and identifies the samples with higher uncertainty;
 - $\circ~$ Noisy class flipper (NCF) selects the labels with the largest ranking loss to apply the flipping.

CCML: Swap Module

- \checkmark This module:
 - o aims at exchanging the ranking information between the networks,
 - o inserted between the two collaborative networks,
 - takes the Binary Cross Entropy (BCE) and ranking losses into consideration to eliminate the detected noisy samples from back-propagation.

A. K. Aksoy , M. Ravanbakhsh , T. Kreuziger , B. Demir

CCML: Swap Module

- \checkmark This module:
 - o aims at exchanging the ranking information between the networks,
 - o inserted between the two collaborative networks,
 - takes the Binary Cross Entropy (BCE) and ranking losses into consideration to eliminate the detected noisy samples from back-propagation.

A. K. Aksoy , M. Ravanbakhsh , T. Kreuziger , B. Demir

CCML: Swap Module

- \checkmark This module:
 - o aims at exchanging the ranking information between the networks,
 - o inserted between the two collaborative networks,
 - takes the Binary Cross Entropy (BCE) and ranking losses into consideration to eliminate the detected noisy samples from back-propagation.

Dataset Description

BigEarthNet

A Large-Scale Sentinel Benchmark Archive

- Experiments have been carried out on the Ireland subset of the BigEarthNet [1] benchmark archive, consisting of 15,894 Sentinel-2 images.
- Each image was annotated by multiple land-cover classes provided by 2018 CLC inventory.
- ✓ We used the land-cover class nomenclature proposed in [2].

[1] G. Sumbul, M. Charfuelan, B. Demir, V. Markl, "BIGEARTHNET: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding", IEEE International Conference on Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.

[2] G. Sumbul, A. d. Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, V. Markl, "BigEarthNet-MM: A Large Scale Multi-Modal Multi-Label Benchmark Archive for Remote Sensing Image Classification and Retrieval", IEEE Geoscience and Remote Sensing Magazine, 2021, doi: 10.1109/MGRS.2021.3089174.

Experimental Setup

- ✓ Two architectures **ResNet** [3] and **DenseNet** [4] were used as **baselines** for comparison.
- ✓ The same architectures were considered as **backbones** for our **CCML**.
- Within the swap module of the CCML, we used 75% of the samples associated with small loss values at each iteration for swapping.
- ✓ The **flipping** module was activated after reaching **90%** of epochs.
- ✓ Noise injection is applied by random selection of n% of samples from each minibatch, and flipping randomly n% of the labels from the selected samples.
- \checkmark The value of *n* was varied from 20 to 50 with a step size increment of 10.

	V 1	1		
	y ₂	C		
	0	synthetically injected missing labels	y ₃	1
1	synthetically injected wrong labels	y ₄	1	
	synthetically injected wrong labels	\mathbf{y}_5	C	
				_

y ₁	1	0	0	0	0	0	1	1	0	0
y ₂	0	0	0	1	0	1	0	0	1	0
y ₃	1	1	0	0	1	0	0	1	1	0
y ₄	1	1	0	1	0	1	0	0	1	0
y 5	0	1	0	0	1	1	0	0	0	1
y ₆	0	0	0	1	0	1	0	0	1	0

[3] . He, X. Zhang, S. Ren, and J. Sun, "Deep residual learningfor image recognition," IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.
[4] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269, 2017.

Injected	Precisi	ion (%)	Reca	III (%)	F1 (%)		
Noise Rate	Baseline (ResNet)	Proposed CCML	Baseline (ResNet)	Proposed CCML	Baseline (ResNet)	Proposed CCML	
20%	87.8	90.2	68.7	68.7	77.1	78	
30%	84	88.2	67.2	68.9	74.7	77.4	
40%	76.4	88.4	65.1	69.3	70.3	77.7	
50%	62.5	87.5	57.6	62.1	60	72.6	

A. K. Aksoy , M. Ravanbakhsh , T. Kreuziger , B. Demir

Experimental Results: DenseNet

Injected Noise Rate	Precisio	on (%)	Recal	l (%)	F1 (%)	
	Baseline (DenseNet)	Proposed CCML	Baseline (DenseNet)	Proposed CCML	Baseline (DenseNet)	Proposed CCML
20%	89.2	89.6	68.4	77.4	77.1	78.1
30%	91.8	92	66.2	66.7	76.9	77.3
40%	85.6	89	68.5	68.7	76.1	77.5
50%	55.3	85.1	62.5	66.4	58.7	74.6

Experimental Results: Class-based Performance

- In some classes, the baseline and the CCML performances are comparable over lower rates of label noise, but CCML maintains relatively high performance under high noise rates.
- ✓ CCML is **stable** under high noise rates.

Conclusion

- ✓ A novel Consensual Collaborative Multi-Label Learning (CCML) has been presented to overcome adverse effects of multi-label noise for the classification of RS images.
- ✓ The proposed CCML is promising since it:
 - is able to automatically identify two different types of multi-label noise (i.e., missing and wrong class label annotations) without making any prior assumption.
 - achieves high accuracy under a high (synthetically added) multi-label noise rates.
 - is architecture-independent, and thus can be used within different network architectures.
 - is applicable in a range of RS applications (e.g., large scale image retrieval, auto-labeling tools, etc.)
- ✓ As a future development, we plan to extend the proposed CCML with an adaptive ranking loss function to adjust the amount of sample removal.

Our code is available at:

https://git.tu-berlin.de/rsim/CCML

Follow us in twitter: @BigEarthERC

