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ü Multi-label remote sensing (RS) image scene
classification methods aim to automatically
assign multiple land-cover class labels to
each image.

ü Deep neural networks (DNNs) have recently
shown a great potential for multi-label
classification problems.

ü Most of the DNNs require a large amount of
annotated multi-label training samples.

Problem: Collecting annotations is very costly in
terms of human time/effort and needs expertise.
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Solution: use the publicly available thematic products
(digital maps) as labelling sources.

ü Thematic products can be used to generate large
scale training sets with zero-labeling-cost, covering
wide areas, such as:

o National scale, e.g., American National Land
Cover Dataset, DFD Land Use and Land Cover
Product for Germany;

o Global scale, e.g., Global Land Cover, the ESA
CCI-LC product;

o Continental scale, e.g., Corine Land Cover
maps at European level.
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pp. 255-272. Springer, Dordrecht, 2014.
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ü However, thematic maps can produce noisy labels since:

1) Errors in the map due to different the strategies used to generate the map;

2) Changes in land-use/land-cover after the construction of the maps;

3) Geolocation errors due to the residual misalignment between a digital map
and a satellite image.

Problem: Training sets with noisy labels are constructed, which can distort the learning
process.
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Introduction: Noisy Labels

4

ü Two types of label noise can be present in a training image with multi-labels:

1. Missing labels;
2. Wrong labels.

ü Methods that are robust to the multi-label noise are required.
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Goals:

ü Automatically identify the samples with noisy labels without any prior assumptions.

ü Train noise-robust classifiers with RS training images under label noise.

Solution:

ü We propose a novel consensual collaborative learning method images (CCML) which
can:

o identify the possible noisy labels by introducing a novel ranking function for
identifying reliable labels,

o estimate the label uncertainty based on the aggregation of two collaborative
networks,

o be used with different classification approaches to detect the potentially noisy
labels assigned to the training images with multi-labels.
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CCML: Discrepancy Module
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ü The discrepancy module aims at forcing the two networks to learn diverse features,
while achieving consistent predictions.

ü It includes: 1) Disparity loss (𝐿$); and 2) Consistency loss (𝐿#).
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ü This module has two main aims:

o Identify potentially noisy labels in the training set by using the predictions of
the two networks.

o Identify the type of label noise by computing a sample-wise ranking loss as:
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ü The flipping module aims at flipping the identified noisy labels and includes:

o Noisy class selector (NCS) receives the ranking loss from two networks and
identifies the samples with higher uncertainty;

o Noisy class flipper (NCF) selects the labels with the largest ranking loss to
apply the flipping.
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ü This module:
o aims at exchanging the ranking information between the networks,
o inserted between the two collaborative networks,
o takes the Binary Cross Entropy (BCE) and ranking losses into consideration to
eliminate the detected noisy samples from back-propagation.
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[1] G. Sumbul, M. Charfuelan, B. Demir, V. Markl, "BIGEARTHNET: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding", IEEE International Conference on 
Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
[2] G. Sumbul, A. d. Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, V. Markl, "BigEarthNet-MM: A Large Scale Multi-Modal Multi-Label Benchmark 
Archive for Remote Sensing Image Classification and Retrieval", IEEE Geoscience and Remote Sensing Magazine, 2021, doi: 10.1109/MGRS.2021.3089174.

ü Experiments have been carried out on the Ireland subset of the BigEarthNet [1]
benchmark archive, consisting of 15,894 Sentinel-2 images.

ü Each image was annotated by multiple land-cover classes provided by 2018 CLC
inventory.

ü We used the land-cover class nomenclature proposed in [2].
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ü Two architectures ResNet [3] and DenseNet [4] were used as baselines for
comparison.

ü The same architectures were considered as backbones for our CCML.
ü Within the swap module of the CCML, we used 75% of the samples associated with
small loss values at each iteration for swapping.

ü The flipping module was activated after reaching 90% of epochs.
ü Noise injection is applied by random selection of n% of samples from each mini-
batch, and flipping randomly n% of the labels from the selected samples.

ü The value of n was varied from 20 to 50 with a step size increment of 10.

1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0 1 0
1 1 0 0 1 0 0 1 1 0
1 1 0 1 0 1 0 0 1 0
0 1 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 0

𝐲!
𝐲#
𝐲$
𝐲%
𝐲"
𝐲'

0

1

Noise injection with the rate of 50%

synthetically injected missing labels

synthetically injected wrong labels

[3] . He, X. Zhang, S. Ren, and J. Sun,  “Deep residual learningfor image recognition,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.
[4] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 
2261–2269, 2017.
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Injected
Noise
Rate

Precision (%) Recall (%) F1 (%)

Baseline
(ResNet)

Proposed
CCML

Baseline
(ResNet)

Proposed
CCML

Baseline
(ResNet)

Proposed
CCML

20% 87.8 90.2 68.7 68.7 77.1 78

30% 84 88.2 67.2 68.9 74.7 77.4

40% 76.4 88.4 65.1 69.3 70.3 77.7

50% 62.5 87.5 57.6 62.1 60 72.6
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Injected
Noise
Rate

Precision (%) Recall (%) F1 (%)

Baseline
(DenseNet)

Proposed
CCML

Baseline
(DenseNet)

Proposed
CCML

Baseline
(DenseNet)

Proposed
CCML

20% 89.2 89.6 68.4 77.4 77.1 78.1
30% 91.8 92 66.2 66.7 76.9 77.3
40% 85.6 89 68.5 68.7 76.1 77.5
50% 55.3 85.1 62.5 66.4 58.7 74.6
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ü In some classes, the baseline and the CCML performances are comparable over
lower rates of label noise, but CCML maintains relatively high performance under
high noise rates.

ü CCML is stable under high noise rates.

Pastures Marine waters Inland wetlands
Moors, heathland and 

sclerophyllous 
vegetation

class represented by a 
high number of training 

images

class represented by a 
small number of training 

images
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ü A novel Consensual Collaborative Multi-Label Learning (CCML) has been presented
to overcome adverse effects of multi-label noise for the classification of RS images.

ü The proposed CCML is promising since it:

§ is able to automatically identify two different types of multi-label noise (i.e.,
missing and wrong class label annotations) without making any prior
assumption.

§ achieves high accuracy under a high (synthetically added) multi-label noise
rates.

§ is architecture-independent, and thus can be used within different network
architectures.

§ is applicable in a range of RS applications (e.g., large scale image retrieval,
auto-labeling tools, etc.)

ü As a future development, we plan to extend the proposed CCML with an adaptive
ranking loss function to adjust the amount of sample removal.
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Our code is available at:

https://git.tu-berlin.de/rsim/CCML
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Follow us in twitter: @BigEarthERC


