

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Improving Classification Accuracy with Graph Filtering

Mounia Hamidouche, Carlos Lassance, Yuqing Hu, Lucas Drumetz, Bastien Pasdeloup, Vincent Gripon

ICIP Conference, Anchorage, Alaska, USA

mounia.hamidouche@gmail.com

September 19-22, 2021

00000	000000	0000	000

1 Deep Learning and Few-shot Learning

2 Methodology

3 Experiments

Deep Learning and Few-shot Learning			
00000	000000	0000	000

1 Deep Learning and Few-shot Learning

2 Methodology

B Experiments

Deep Learning and Few-shot Learning 00000		
Introduction		

► Deep Learning is the state of the art for many machine learning problems

▶ Reaching peak performance typically requires large annotated datasets

▶ Performing predictions on batches of unlabeled inputs can boost performance: this setting is called *transductive*.

Transductive predictions are even more impactful in the case of few-shot learning

▶ N-way K-shot image classification

 \blacktriangleright For $K\leq$ 5, classify the query images among the N classes given the $N\times K$ images in the support set

Methodology 000000 Experiments 0000 Conclusion and Perspectives

Few-shot Learning Methods

Main idea of the paper:

► Idea: Insert a denoising method after feature extraction and before classification after a model has been trained

► Goal: filter out the high frequencies within the feature representation of data to improve classification performance

▶ Tool: graph signal processing framework

00000	00000	000

Deep Learning and Few-shot Learning

2 Methodology

8 Experiments

Graph Signal Processing (GSP)

▶ GSP allows to manipulate signals defined on graph structures

 \bullet Assume $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathbf{W})$ is connected. If not, just process each component separately

 $\mathcal{V} = \{ 1, 2, ...n \}$: finite set of n nodes or vertices \mathcal{E} : set of edges $\mathbf{W} : \mathcal{E} \to \mathbb{R}$: map from the set of edges to scalar values

- Assume undirected graph with fixed graph structure
- Vertex signal $\mathbf{f}_i : \mathcal{V} \to \mathbb{R}$
- Graph signal $\mathbf{f} = [\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_n]^\top$

► Graph filters are systems that take a graph signal as an input and produce another signal indexed by the same graph as the output

Class Graphs

▶ Define a similarity matrix W between labeled samples

 $\mathbf{W}_{i,j} = w\left(\mathbf{f}_i, \mathbf{f}_j\right)$ if $i \neq j$ and 0 otherwise,

where s is a similarity measure on tensors.

▶ This matrix defines a graph *G*

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$$

with $\mathcal{V} = \{1, ..., |\mathbf{f}|\}.$

▶ Generate the adjacency matrix \mathbf{W} of \mathcal{G} for each class using *k*-nearest neighbors

 $\mathbf{W}_{i,j} = \begin{cases} \mathbf{W}_{i,j} & \text{if } \mathbf{W}_{i,j} \text{ is among the } k \text{ largest entries of row,} \\ 0 & \text{otherwise.} \end{cases}$

▶ Normalized Laplacian matrix of G

$$\mathbf{L} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}} ,$$

where \mathbf{D} is the diagonal degree matrix.

Methodology 000●00	

Graph Filters

- **>** Eigenvalues λ of L are interpreted as frequencies
- ► A filter is usually defined by its spectral response

$$h: \lambda \mapsto h(\lambda)$$

where $\lambda \in \boldsymbol{\lambda}$.

▶ $\mathbf{H} = \operatorname{diag}(h(\boldsymbol{\lambda}))$, the filtered signal $\mathbf{f}^{\operatorname{filter}}$ is defined as

 $\mathbf{f}^{\mathrm{filter}} = \mathbf{U} \mathbf{H} \mathbf{U}^{\top} \mathbf{f} \; .$

where \mathbf{U} are the eigenvectors of \mathbf{L} .

Observations

- \bullet To remove high frequencies in ${\bf f},$ a low-pass filter h nullifies large values of λ
- \bullet We substitute f with $f^{\rm filter}$ as an input for the classifier

Effect of Low-pass Graph Filters on Centroids (1)

Low-pass filter: $h(\lambda) = 1$ if $\lambda \leq \lambda_m$ and $h(\lambda) = 0$ if not.

▶ Mini-imageNet data representation before applying any filter

Mini-imageNet data representation after applying a graph filter

00000	

Effect of Low-pass Graph Filters on Centroids (2)

$$\blacktriangleright \mathbf{f}_i \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

Centroids are computed as

$$\boldsymbol{\gamma} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{f}_i \; .$$

Filter **H** such that $h(\lambda) = 1$ if $\lambda \leq \lambda_m$ and $h(\lambda) = 0$ otherwise ($\lambda \in \lambda$)

Result

▶ We build a complete graph for each class, and let the number of labeled samples of that class $K \to \infty$, then

$$\mathbb{E}(\boldsymbol{\gamma}^{ ext{filter}}) = \mathbb{E}(\boldsymbol{\gamma}) \;,$$

 $\operatorname{Cov}(\boldsymbol{\gamma}^{ ext{filter}}) = o\left(\operatorname{Cov}(\boldsymbol{\gamma})\right)$

00000	000000	0000	000

Deep Learning and Few-shot Learning

2 Methodology

3 Experiments

5-shot Accuracy of the Methodology Compared with State-of-the-art Method, for Various Extractors

- Runs = 100.000
- Number of classes N = 5
- \bullet Shots K=5
- Queries q = 15

Classifier				
Dataset	Extractors	No Filter %	With Filter %	
MINot	WRN	88.82 ± 0.013	88.90 ± 0.011	
winner	DNet121	86.82 ± 0.014	86.87 ± 0.014	
CUB	WRN	93.99 ± 0.011	94.14 ± 0.009	
CIFAR	WRN	90.68 ± 0.015	90.75 ± 0.015	
TINet	DNet121	90.44 ± 0.014	90.62 ± 0.013	

	Experiments 00●0	

Evolution of the Accuracy on CUB (extractor: WRN) as a Function of Shots K

	0000	

Accuracy on the CIFAR-10 Dataset

	CIFAR-10			
Method	WRN	ShakeNet	PyramidNet	
original paper	95.82 %	97.96 %	98.56 %	
NCM	85.81 %	97.97 %	98.52 %	
1-NN	95.81 %	97.95 %	98.54 %	
1-NN+Filter	95.92 %	97.97 %	98.61 %	

	Conclusion and Perspectives
	000

Deep Learning and Few-shot Learning

2 Methodology

B Experiments

- A graph-based method is proposed to improve the accuracy of classification methods
- Use of GSP to reduce the noise in the extracted feature vectors
- The effectiveness of the method was shown theoretically
- Gains are obtained in two different settings: few-shot classification and standard classification
- Explore an automatic way of choosing the best filter parameters

	Conclusion and Perspectives
	000

Thanks for Your Attention.

mounia.hamidouche@gmail.com