

Reinforced Curriculum Learning

FOR AUTONOMOUS URBAN DRIVING IN CARLA

Luca Anzalone (UniBo), Dr. Silvio Barra (UniNa), Prof. Michele Nappi (UniSa)

Outline

Autonomous Driving Reinforcement Learning CARLA

Proposed Approach

Autonomous Driving

Autonomous Vehicles: Sensors

SAE AUTOMATION LEVELS

LEVEL 0	LEVEL 1	LEVEL 2			
There are no autonomous features.	These cars can handle one task at a time, like automatic braking.	These cars would have at least two automated functions.			
LEVEL 3	LEVEL 4	LEVEL 5			
CONTRACT	0100	Venie			
These cars handle "dynamic driving tasks" but might still need intervention.	These cars are officially driverless in certain environments.	These cars can operate entirely on their own without any driver presence			

Reinforcement Learning

Credits: D. Silver & S. Levine

Markov Decision Processes (MDPs)

 $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$

 \mathbf{s}_2

 \mathbf{s}_1

 $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$

 \mathbf{s}_3

Performance Objective

Difficult to maximize directly!

Sampling is involved:

- High-variance,
- Unstable.

 $\rho(s_1)$ = initial state distribution.

Trajectory $\tau = (s_1, a_1, s_2, a_2, s_3, ..., a_{T-1}, s_T)$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}} \left[\underbrace{\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t)}_{\text{return } R_t} \right]$$

$$p_{\theta}(\tau) = \rho(s_1) \prod_{t=1}^{T} \mathcal{P}(s_{t+1} \mid s_t, a_t) \ \pi_{\theta}(a_t \mid s_t),$$

$$J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} r(s_t^{(i)}, a_t^{(i)})$$
$$\theta^* = \arg \max_{\theta} J(\theta)$$

CARLA

AUTONOMOUS DRIVING SIMULATOR

Reinforced Curriculum Learning

Reinforced Curriculum Learning

Combine Deep Reinforcement Learning with Curriculum Learning!

Curriculum learning guides agent training.

Training is divided into **five stages** of increasing difficulty:

- Same map (town03) and same vehicle.
- Start from few fixed spawn locations.
- *No, regular, dense* traffic: up to **100 vehicles** and **200 pedestrians**.
- Change weather conditions: day/sunset/night, clear/cloudy/rain.
- Data augmentation.

Reinforcement learning further improves policy at each stage.

Per stage: 500 episodes, 512 timesteps ⇒ 5x1.28M timesteps.

Reward Function

$$r_t = \begin{cases} -c_p & \text{if collision,} \\ s_{\text{limit}} - v_{\text{speed}} & \text{if } v_{\text{speed}} > s_{\text{limit}}, \\ \frac{v_{\text{speed}} \cdot v_{\text{sim}}}{(d_w/2)^2} & \text{otherwise} \end{cases}$$

 c_p : collision penalty, d_w : distance to next waypoint w, v_{sim} : cosine similarity with vehicle heading and w.

 s_{limit} : current speed limit, v_{speed} : actual vehicle speed.

Observation Space

Stack of *four tensors* in time: a tensor is stacked after **discarding three frames**.

The observation $o_t = \{[I, G, V, N]_k\}_{k=1}^4$:

- Image I: shaped $90 \times 360 \times 3$; is the concatenation of three $90 \times 120 \times 3$ RGB images from left, middle and right camera sensors.
- Road features G (9-dimensional): *is intersection, is junction, is at traffic light, speed limit,* and *traffic light state* (5-dimensional one-hot encoded).
- Vehicle features V (4-dimensional): *similarity* (i.e., cosine similarity between heading direction and next route waypoint), *speed*, *throttle*, and *brake* values.
- Navigational features N (5-dimensioal): vector of *five distances* from current vehicle location to next five waypoints.

Image Augmentations

Color distortion, Gaussian blur, Gaussian noise, salt-and-pepper noise, cutout, and coarse dropout.

Base-Exponent Value Decomposition

$$\mathcal{L}_{v}(\phi) = \sum_{t=0}^{T-1} \frac{(b_{v_{t}} - b_{R_{t}})^{2}}{\alpha} + \frac{(e_{v_{t}} - e_{R_{t}})^{2}}{\beta}$$

 $b \in [-1, 1]$ $e \in [0, k]$

$$R_t = \sum_{i=t}^{T-1} \gamma^i r_i$$

 $\alpha = 4, \beta = k^2$

$$v = b \cdot 10^e$$

Regress **Base** b

Regress Exponent e

Sign-preserving Advantage Normalization

$$A_t \approx R_t - \hat{V}_t$$

If values \hat{v}_t are **not accurate**, advantages A_t will be **large**!

Remember: $\nabla_{\theta} \mathcal{L} = \nabla_{\theta} \log \pi_{\theta}(a \mid s) A(s, a)$

Normalizes **negative** and **positive** advantages **separately** ⇒ sign is preserved. def sign_preserving_normalization(adv):
pos = adv * float(adv > 0.0) # mask
neg = adv * float(adv < 0.0)
return (pos / tf.reduce_max(adv)) +
 (neg / -tf.reduce_min(adv))</pre>

(b) Advantages Normalized

Small scale!

Results

PROPOSED DRIVING AGENT

Metric/ Town		Town01	Town02	Town03	Town04	Town05	Town06	Town07	Town10	Total
Collision rate	C	0.86	0.78	0.88	0.51	0.49	0.33	0.77	0.48	64%
	S	0.79	0.84	0.7	0.63	0.4	0.3	0.78	0.57	63%
	U	0.99	0.99	0.98	0.99	0.98	0.92	0.88	0.89	95%
Similarity	С	0.95	0.95	0.94	0.92	0.91	0.96	0.89	0.85	92%
	S	0.94	0.93	0.9	0.92	0.9	0.96	0.86	0.9	91%
	U	0.84	0.8	0.8	0.82	0.72	0.7	0.76	0.72	77%
Speed	С	7.78	8.46	8.13	9.05	8.55	9.63	7.65	8.76	8.5 km/h
	S	8.58	8.22	8.43	9.05	9.36	9.33	7.68	8.57	8.65 km/
	U	5.96	5.7	6.04	5.98	6.38	6.55	5.75	6.25	6.08 km/
Timesteps	С	296	335	347	413	406	468	323	400	374
	S	316	331	371	375	428	471	282	373	368
	U	191	207	237	207	268	313	215	269	238
Total reward	С	1866	2530	2157	2161	1764	1951	1813	1961	2025
	S	2135	2036	1996	1780	2190	2030	1479	1906	1944
	U	503	496	589	542	484	688	357	524	523
Waypoint distance	С	1.54	1.44	1.75	3.75	3.74	5.16	2.18	4.3	2.98 m
	S	1.77	1.97	2.98	3.9	3.8	4.69	2.24	3.3	3.08 m
	U	2.4	2.77	3.24	3.2	4.66	4.43	3.34	4.05	3.51 m

Consistent results across towns!

Town02 daytime

Town07 evening

Town07 sunset

References

Code: <u>https://www.github/carla-driving-rl-agent</u>

PPO: Proximal policy optimization algorithms (J. Schulman et al. 2017)

GAE: High-dimensional continuous control using generalized advantage estimation (J. Schulman et al. 2016)

CARLA: "Carla: An open urban driving simulator" (A. Dosovitskiy et al. 2017, CoRL)

Curriculum Learning: Curriculum learning (Y. Bengio et al. 2009, ICML)

GRU: Learning phrase representations using RNN encoder–decoder for statistical machine translation (K. Cho et al. 2014, EMNLP)

ShuffleNetV2: "Shufflenet v2: Practical guidelines for efficient CNN architecture design" (N. Ma et al. 2018, ECCV)

Luca Anzalone (UniBo), Dr. Silvio Barra (UniNa), Prof. Michele Nappi (UniSa)

End.

THANKS FOR THE ATTENTION

