

# **Reinforced Curriculum Learning for Autonomous Driving**

## Abstract

We combined **Reinforcement Learning** (RL) [5] with **Curriculum Learning** [1] to learn an *end-to-end* driving policy for the **CARLA** autonomous driving simulator [3]:

- Five stages of curriculum learning guide training.
- **Proximal Policy Optimization** (PPO) [4] improves the agent driving policy  $\pi_{\theta}(a \mid s)$ , at each stage.
- The value function V(s) is decomposed into bases b and exponents e, such that:  $V(s) = b \cdot 10^{e}$ .
- The advantage function is normalized to preserve its sign.
- For the first time, achieved **results are consistent on all towns**.

# Introduction

Autonomous Vehicles (AVs) can be built in two ways [6]:

- **Modular pipeline:** *percetion, planning, and motion control components are* build and optimized in *isolation*, towards human-designed criteria. **Error propagation** is a major issue. Intermediate representations are not optimal.
- End-to-end approach: underlying tasks are *implicitly learned*, without domain knowledge, and jointly optimized with respect to a global objective.

In practice, end-to-end AVs are implemented leveraging:

- Imitation Learning [2]: supervision by large amounts of labeled expert data, training is easy and stable, out-of-distribution data is a major issue.
- **Reinforcement Learning:** requires to interact with a driving environment, often unstable, can discover better-than-expert driving policies.



# Agent Architecture

https://github.com/Luca96/carla-driving-rl-agent

<sup>1</sup>University of Bologna (DIFA)

<sup>2</sup>University of Naples "Federico II" (DIETI)

| 320                   |      | action         |
|-----------------------|------|----------------|
| $\left \right\rangle$ | π    | a <sub>t</sub> |
| ×                     | Beta |                |

The agent neural network processes a stack of four sub-observations  $o_t^i$  at each timestep t, whose outputs are aggregated by multiple Gated Recurrent Units.

# **Base-Exponent Value Decomposition**

 $V_{\phi}(s_t)$  is learned by minimizing the squared loss towards the returns  $R_t$ . Since returns can be very **large numbers**, the regression can become **very unstable**.

### How to avoid the "large" part of a number?

 $V = b \cdot 10^e$ 

Where the base  $b \in [-1, 1]$ , and the exponent  $e \in [0, k]$ . The hyperparameter k is set such that the maximum/minimum value or return does not exceed  $\pm 10^k$ .

What we regress are the bases  $b_v$  and exponents  $e_v$  of the values:

 $\mathcal{L}_V(\phi) \propto \|b_v - b_R\|_2^2 + \|e_v - e_R\|_2^2$ 

### **Benefits:**

- The gradient norm is *always* small,
- Unbiased normalization of returns  $R_t$ ,
- Easy to implement and optimize.

# Sign-preserving Advantage Normalization

The magnitude of the estimated advantages  $A_t$  affect the norm of the policy gradient in a multiplicative way. Higher norm means larger update steps, which can make the training process less stable.



By independently normalizing the negative and positive elements of the vector  $A_t$ , we reduce them to **unit scale** while keeping their **sign unchanged**: meaning that the intuitive notion of *better*- or *worse-than-average* actions a, described by the advantage function A(s, a), is still preserved.

#### Benefits:

- Unitary scale of the estimated advantages,
- Small norm of the policy gradients,
- Better interpretation thanks to sign preservation.

Luca Anzalone<sup>1</sup> Silvio Barra<sup>2</sup> Michele Nappi<sup>3</sup>

<sup>3</sup>University of Salerno (DI)

A curriculum composed of **five stages** of reinforcement learning guides the agent:

- pedestrians are placed around the map.
- positioned across the entire town.
- pedestrians and vehicles is respectively increased to 200 and 100.

Each stage can be regarded as a distinct learning environment. Furthermore, notice that all the training stages occur in the same urban scenario: Town03.

Stage-based reinforcement learning has proved to be robust and consistent on visually and topologically different towns from the CARLA simulator:

| Metric       | Town01      | Town02      | Town03      | Town04      | Town05      | Town06      | Town07      | Total**     |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Collision    | 86          | <b>78</b>   | 88          | <b>51</b>   | 49          | 33          | <b>77</b>   | 64          |
| rate (%)     | <b>79</b>   | 84          | <b>70</b>   | 63          | <b>40</b>   | <b>30</b>   | 78          | <b>63</b>   |
| Speed        | 7.78        | <b>8.46</b> | 8.13        | 9.05        | 8.55        | <b>9.63</b> | 7.65        | 8.5         |
| (km/h)       | <b>8.58</b> | 8.22        | <b>8.30</b> | 9.05        | <b>9.36</b> | 9.33        | <b>7.68</b> | <b>8.65</b> |
| Total        | 1866        | <b>2530</b> | <b>2157</b> | <b>2161</b> | 1764        | 1951        | <b>1813</b> | <b>2025</b> |
| reward       | <b>2135</b> | 2036        | 1996        | 1780        | <b>2190</b> | <b>2030</b> | 1479        | 1944        |
| Waypoint     | <b>1.54</b> | <b>1.44</b> | <b>1.75</b> | <b>3.75</b> | <b>3.74</b> | 5.16        | <b>2.18</b> | <b>2.98</b> |
| distance (m) | 1.77        | 1.97        | 2.98        | 3.90        | 3.80        | <b>4.69</b> | 2.24        | 3.08        |

Table 1. First row of each metric refers to the curriculum-based agent. (\*\*) Total results are aggregated over weather sets and traffic scenarios; for clarity some columns are missing.

- 41-48, 2009.
- Automation (ICRA), pages 4693–4700, 2018.
- policy optimization algorithms. *CoRR*, abs/1707.06347, 2017.
- 2018.



### **Reinforced Curriculum Learning**

• Stage 1: the agent starting point is sampled from a small set of 10 locations. There are no pedestrians and vehicles. Speed limits must be respected. • Stage 2: the set of starting locations is enlarged to 50. Also, at most 50

• Stage 3: starting locations are not limited in number anymore. Change of weather and light conditions are introduced. Moreover, 50 vehicles are also

• Stage 4: data augmentations on captured camera images are enabled.

• Stage 5: along with all the previously defined rules, the number of

### Results

### References

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages

[2] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via conditional imitation learning. In 2018 IEEE International Conference on Robotics and

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open urban driving simulator. *arXiv preprint arXiv*:1711.03938, 2017.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

[5] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press,

[6] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8:58443–58469, 2020.