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Abstract

We combined Reinforcement Learning (RL) [5] with Curriculum

Learning [1] to learn an end-to-end driving policy for the CARLA

autonomous driving simulator [3]:

Five stages of curriculum learning guide training.

Proximal Policy Optimization (PPO) [4] improves the agent

driving policy πθ(a | s), at each stage.

The value function V (s) is decomposed into bases b and
exponents e, such that: V (s) = b · 10e.

The advantage function is normalized to preserve its sign.

For the first time, achieved results are consistent on all towns.

Introduction

Autonomous Vehicles (AVs) can be built in two ways [6]:

Modular pipeline: percetion, planning, and motion control components are

build and optimized in isolation, towards human-designed criteria. Error

propagation is a major issue. Intermediate representations are not optimal.

End-to-end approach: underlying tasks are implicitly learned, without domain

knowledge, and jointly optimized with respect to a global objective.

In practice, end-to-end AVs are implemented leveraging:

Imitation Learning [2]: supervision by large amounts of labeled expert data,

training is easy and stable, out-of-distribution data is a major issue.

Reinforcement Learning: requires to interact with a driving environment,

often unstable, can discover better-than-expert driving policies.

Agent Architecture

We designed and end-to-end RL-based autonomous system:

The agent neural network processes a stack of four sub-observations oi
t at each

timestep t, whose outputs are aggregated by multiple Gated Recurrent Units.

Base-Exponent Value Decomposition

Vφ(st) is learned by minimizing the squared loss towards the returns Rt. Since

returns can be very large numbers, the regression can become very unstable.

How to avoid the ”large” part of a number?

V = b · 10e

Where the base b ∈ [−1, 1], and the exponent e ∈ [0, k]. The hyperparameter k
is set such that the maximum/minimum value or return does not exceed ±10k.

What we regress are the bases bv and exponents ev of the values:

LV (φ) ∝ ‖bv − bR‖2
2 + ‖ev − eR‖2
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Benefits:

The gradient norm is always small,

Unbiased normalization of returns Rt,

Easy to implement and optimize.

Sign-preserving Advantage Normalization

The magnitude of the estimated advantages At affect the norm of the policy

gradient in a multiplicative way. Higher norm means larger update steps, which

can make the training process less stable.

By independently normalizing the negative and positive elements of the vector

At, we reduce them to unit scale while keeping their sign unchanged: meaning

that the intuitive notion of better- or worse-than-average actions a, described by

the advantage function A(s, a), is still preserved.

Benefits:

Unitary scale of the estimated advantages,

Small norm of the policy gradients,

Better interpretation thanks to sign preservation.

Reinforced Curriculum Learning

Acurriculum composed of five stages of reinforcement learning guides the agent:

Stage 1: the agent starting point is sampled from a small set of 10 locations.
There are no pedestrians and vehicles. Speed limits must be respected.

Stage 2: the set of starting locations is enlarged to 50. Also, at most 50
pedestrians are placed around the map.

Stage 3: starting locations are not limited in number anymore. Change of

weather and light conditions are introduced. Moreover, 50 vehicles are also
positioned across the entire town.

Stage 4: data augmentations on captured camera images are enabled.

Stage 5: along with all the previously defined rules, the number of

pedestrians and vehicles is respectively increased to 200 and 100.

Each stage can be regarded as a distinct learning environment. Furthermore,

notice that all the training stages occur in the same urban scenario: Town03.

Results

Stage-based reinforcement learning has proved to be robust and consistent on

visually and topologically different towns from the CARLA simulator:

Metric Town01 Town02 Town03 Town04 Town05 Town06 Town07 Total**

Collision

rate (%)

86 78 88 51 49 33 77 64

79 84 70 63 40 30 78 63

Speed

(km/h)

7.78 8.46 8.13 9.05 8.55 9.63 7.65 8.5

8.58 8.22 8.30 9.05 9.36 9.33 7.68 8.65

Total

reward

1866 2530 2157 2161 1764 1951 1813 2025

2135 2036 1996 1780 2190 2030 1479 1944

Waypoint

distance (m)

1.54 1.44 1.75 3.75 3.74 5.16 2.18 2.98

1.77 1.97 2.98 3.90 3.80 4.69 2.24 3.08

Table 1. First row of each metric refers to the curriculum-based agent. (**) Total results are

aggregated over weather sets and traffic scenarios; for clarity some columns are missing.
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