#2853 **Two-Stage Seamless Text Erasing On Real-World Scene Images** Benjamin Conrad¹ Pei-i Chen² ¹ University of Amsterdam ² Jumio AI Labs

Task:

Text erasing is the task of removing all text found in an image and filling in the background pixels.

Challenges:

- Previous approaches perform poorly on real-world images:
 - Loss of fine detail
 - Inconsistent background colors
 - Failing to erase all text
- Fine detail inpainting requires computationally expensive models or complicated training procedures.

Contacts:

- <u>benjamin.conrad@student.uva.nl</u>
- <u>pei-i.chen@jumio.com</u>

Results

				Reno	orted	Method	Rec
N <i>T</i> (1 1	DOMD [†]					withiti	NUC
Method	PSNR	SSIM	MAE^	PSNR'	SSIM'	Nakamura <i>et al.</i> [1]	10.
EnsNet [2]*	31.18	91.12	0.018	37.36	96.44	$\mathbf{E}_{n} \in \mathbf{N} \to [\mathbf{O}]$	5.6
MTRNet [3]	30.56	90.14	0.021	29 71	94 43	Ensivet [2]	5.0
$\mathbf{MTDN}_{ot+1} [4]$	22 12	02 10	0.021	24.55	08 45	MTRNet [3]	29.
$\mathbf{WIRKNel++}[4]$	55.45	93.10	0.015	54.55	90.45	$WS_TE(ResNet_50)[5]$	2/
WS-TE (ResNet-50) [5]*	30.73	93.43	0.016	37.44	93.69	WS-IE(Residet-30)[5]	∠
WS-TE (ResNet-152) [5]	-	-	-	37.46	93.64	WS-TE (ResNet-152) [5]	0.6
Ours	32.97	94.90	0.013	32.97	94.90	Ours	0.5

Results on SCUT synthetic text erasing dataset

Method	# Images	% Votes	
WS-TE (ResNet-50) [5]	12	18%	
Ours	213	82%	-
Tie	8	-	

Results of human perceptual study

Methodology

Stage 1: Text Mask Generator

- Generates a binary segmentation mask covering all pixels that contain a character.
- Network consists of a CRAFT text detector with a segmentation network head.
- Trained with Tversky loss to penalized false negatives more than false positives and ensure masks entirely cover each character.

Stage 2: Inpainting Model

- GAN model takes the masked image, image gradients and generated mask as input and produces a text-free version of the original image. • Builds off the baseline encoder-decoder architecture by incorporating skip connections,
- sub-pixel upsampling and multiscale inpainting.
- Trained with novel multiscale gradient reconstruction loss to generate fine details and smooth surfaces without any significant computation cost.

$$L_{gr} = \frac{\sum_{i} \|\nabla I_{pre}\|}{\xi}$$

Results on ICDAR 2013 text detection benchmark

Matches SOTA on synthetic datasets. Significantly preferred over previous **SOTA on real-world images.**

 $-\nabla I_{i}\|_{2}^{2}$

