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Introduction

Text erasing is the task of removing all words, numbers and characters found in an
image and filling in these pixels in a realistic fashion.

Use cases: Removing sensitive information (license plate numbers), text swapping,
dataset creation.

Previous approaches struggle on real-world examples:
o Failstoremove all text
o Noticeable artifacts
o Lack of fine details
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Two-Stage Text Erasing Pipeline
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Stage 1: Text Mask Generator

Stage 2: Inpainting Model
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Stage 1: Text Mask Generator

CIacton A133
L

Image passed through CRAFT! text detector to extract per character saliency

information.
Detector output is further refined using an ASPP segmentation head to generate a binary

text segmentation mask.
To ensure that text is entirely covered, the model is trained using the Tversky Loss!?.
o «a=0.1 5=0.9 (1 Penalize false negatives more than false positives.

_— TP
kv = TP 1 aFP + BFN
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Stage 2: Inpainting Model

ep

e The masked image, image gradients and generated mask are passed through the
inpainting model to produce a text-free version of the original image.
e Architecture builds off EdgeConnect’s!? image completion network.
o Includes additional improvements such as skip connections, sub-pixel upsampling!®!
and multiscale generation.
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Stage 2: Inpainting Model
il

=
e Multiscale Gradient Reconstruction Loss:
o Enforces model to produce sharp edges as well as smooth surfaces.
o Low computational cost SV Lyea, — V|12
_ i pred; 11|12

S

Lgr
e Other Loss Functions:

o Fullresolution: L1, gradient, style, perceptual, total variation, adversarial.
o Allresolutions: L1, gradient
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Training

Text mask generator trained on real-world images from ICDAR 2013 and TotalText.
Inpainting model trained on synthetic images from SynthText.

Each stage is trained separately and combined during evaluation to create the text
erasing pipeline
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Synthetic Evaluation

e FEvaluated on SCUT synthetic
text erasing dataset.

e Our method matches the
state of the art while not
being optimized for synthetic

data. | |
Reported ‘
Method PSNR' | SSIM' | MAE* | PSNRT | SSIM' I i I I I I
EnsNet [2]* 3118 [ 91.12 [ 0.018 [ 37.36 [ 96.44 . l : l I I I
MTRNet [3] 30.56 | 90.14 | 0.021 | 29.71 | 94.43

MTRNet++ [4] 33.43 93.10 | 0.015 34.55 98.45 Input EnSNet[4] MTRNet[S] MTRNet++[6] Zdenek et al.[7] Ours
WS-TE (ResNet-50) [5]* | 30.73 93.43 | 0.016 | 37.44 | 93.69
WS-TE (ResNet-152) [5] - - - 3746 | 93.64
Ours 3297 | 9490 | 0.013 | 3297 | 94.90

Table 3. Quantitative results on the SCUT dataset, including our re-calculated values along with each method’s reported values.
*Values are from re-implementations. THigher is better.*Lower is better.
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Real-World Evaluation

WARNING
Trespassini ovlcausing |
nuisance on a school site can lead
Human perceptual study conducted R oot
with images from ICDAR 2013 test set. B

Our method is significantly prefered
over previous state of the art on
real-world images.

| Method | # Images | % Votes |
WS-TE (ResNet-50) [5] 12 18%
Ours 213 82%
Tie 8 -

Table 2. Results of our human perceptual study. The second
column shows the number of images that each model received
a majority of votes.
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Thank You
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