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Introduction
● Text erasing is the task of removing all words, numbers and characters found in an 

image and filling in these pixels in a realistic fashion.

● Use cases: Removing sensitive information (license plate numbers), text swapping, 
dataset creation.

● Previous approaches struggle on real-world examples: 
○ Fails to remove all text
○ Noticeable artifacts
○ Lack of fine details



jumio.com

Two-Stage Text Erasing Pipeline

Stage 1: Text Mask Generator

Stage 2: Inpainting Model
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Stage 1: Text Mask Generator

● Image passed through CRAFT[1] text detector to extract per character saliency 
information.

● Detector output is further refined using an ASPP segmentation head to generate a binary 
text segmentation mask.

● To ensure that text is entirely covered, the model is trained using the Tversky Loss[2].
○ ⍺=0.1  𝛽=0.9 🠖 Penalize false negatives more than false positives.
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Stage 2: Inpainting Model

● The masked image, image gradients and generated mask are passed through the 
inpainting model to produce a text-free version of the original image.

● Architecture builds off EdgeConnect’s[2] image completion network.
○ Includes additional improvements such as skip connections, sub-pixel upsampling[3] 

and multiscale generation.
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Stage 2: Inpainting Model

● Multiscale Gradient Reconstruction Loss:
○ Enforces model to produce sharp edges as well as smooth surfaces.
○ Low computational cost

● Other Loss Functions:
○ Full resolution: L1, gradient, style, perceptual, total variation, adversarial.
○ All resolutions: L1, gradient
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Training

● Text mask generator trained on real-world images from ICDAR 2013 and TotalText.
● Inpainting model trained on synthetic images from SynthText.

● Each stage is trained separately and combined during evaluation to create the text 
erasing pipeline
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Synthetic Evaluation

● Evaluated on SCUT synthetic 
text erasing dataset.

● Our method matches the 
state of the art while not 
being optimized for synthetic 
data. 

Input EnsNet[4] MTRNet[5] MTRNet++[6] Zdenek et al.[7] Ours
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Real-World Evaluation

● Human perceptual study conducted 
with images from ICDAR 2013 test set. 

● Our method is significantly prefered 
over previous state of the art on 
real-world images.

Input Zdenek et al.[7] Ours
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Thank You
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