## Two-Stage Seamless Text Erasing on Real-World Scene Images

Benjamin Conrad<sup>1</sup> Pei-I Chen<sup>2</sup> <sup>1</sup> University of Amsterdam<sup>2</sup> Jumio Al Labs

## Introduction

- **Text erasing** is the task of removing all words, numbers and characters found in an image and filling in these pixels in a realistic fashion.
- Use cases: Removing sensitive information (license plate numbers), text swapping, dataset creation.
- Previous approaches struggle on real-world examples:
  - Fails to remove all text
  - Noticeable artifacts
  - Lack of fine details



## **Two-Stage Text Erasing Pipeline**

Stage 1: Text Mask Generator

Stage 2: Inpainting Model





#### Stage 1: Text Mask Generator



- Image passed through CRAFT<sup>[1]</sup> text detector to extract per character saliency information.
- Detector output is further refined using an ASPP segmentation head to generate a binary text segmentation mask.
- To ensure that text is entirely covered, the model is trained using the Tversky Loss<sup>[2]</sup>.
  - $\alpha = 0.1 \beta = 0.9 \square$  Penalize false negatives more than false positives.

$$L_{tvky} = \frac{TP}{TP + \alpha FP + \beta FN}$$



## Stage 2: Inpainting Model



- The masked image, image gradients and generated mask are passed through the inpainting model to produce a text-free version of the original image.
- Architecture builds off EdgeConnect's<sup>[2]</sup> image completion network.
  - Includes additional improvements such as skip connections, sub-pixel upsampling<sup>[3]</sup> and multiscale generation.



## Stage 2: Inpainting Model



- Multiscale Gradient Reconstruction Loss:
  - Enforces model to produce sharp edges as well as smooth surfaces.
  - Low computational cost

$$L_{gr} = \frac{\sum_{i} \|\nabla I_{pred_i} - \nabla I_i\|_2^2}{S_i}$$

- Other Loss Functions:
  - Full resolution: L1, gradient, style, perceptual, total variation, adversarial.
  - All resolutions: L1, gradient



## Training

- Text mask generator trained on **real-world images** from ICDAR 2013 and TotalText.
- Inpainting model trained on synthetic images from SynthText.
- Each stage is **trained separately** and combined during evaluation to create the text erasing pipeline



## Synthetic Evaluation

- Evaluated on SCUT synthetic text erasing dataset.
- Our method matches the state of the art while not being optimized for synthetic data.

|                        |                   |                   | Reported |                         |                   |
|------------------------|-------------------|-------------------|----------|-------------------------|-------------------|
| Method                 | PSNR <sup>†</sup> | SSIM <sup>†</sup> | MAE*     | <b>PSNR<sup>†</sup></b> | SSIM <sup>†</sup> |
| EnsNet [2]*            | 31.18             | 91.12             | 0.018    | 37.36                   | 96.44             |
| MTRNet [3]             | 30.56             | 90.14             | 0.021    | 29.71                   | 94.43             |
| MTRNet++ [4]           | 33.43             | 93.10             | 0.015    | 34.55                   | 98.45             |
| WS-TE (ResNet-50) [5]* | 30.73             | 93.43             | 0.016    | 37.44                   | 93.69             |
| WS-TE (ResNet-152) [5] | -                 | -                 | -        | 37.46                   | 93.64             |
| Ours                   | 32.97             | 94.90             | 0.013    | 32.97                   | 94.90             |

**Table 3.** Quantitative results on the SCUT dataset, including our re-calculated values along with each method's reported values.

 \*Values are from re-implementations. <sup>†</sup>Higher is better.\*Lower is better.





### **Real-World Evaluation**

- Human perceptual study conducted with images from ICDAR 2013 test set.
- Our method is **significantly prefered** over previous state of the art on real-world images.

| Method                | # Images | % Votes |
|-----------------------|----------|---------|
| WS-TE (ResNet-50) [5] | 12       | 18%     |
| Ours                  | 213      | 82%     |
| Tie                   | 8        | -       |

**Table 2.** Results of our human perceptual study. The second column shows the number of images that each model received a majority of votes.



JUMIG

# **Thank You**



## References

[1] Baek, Youngmin, et al. "Character region awareness for text detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[2] Nazeri, Kamyar, et al. "Edgeconnect: Generative image inpainting with adversarial edge learning." arXiv preprint arXiv:1901.00212 (2019).

[3] Shi, Wenzhe, et al. "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

[4] Zhang, Shuaitao, et al. "Ensnet: Ensconce text in the wild." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

[5] Tursun, Osman, et al. "Mtrnet: A generic scene text eraser." 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019.

[6] Tursun, Osman, et al. "MTRNet++: One-stage mask-based scene text eraser." Computer Vision and Image Understanding 201 (2020): 103066.

[7] Zdenek, Jan, and Hideki Nakayama. "Erasing scene text with weak supervision." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.

