

SATURATED REGION RECOVERY IN TONE-MAPPED HDR IMAGES

Oguzhan Ulucan, Diclehan Karakaya, Mehmet Turkan

Department of Electrical and Electronics Engineering, Izmir University of Economics

Izmir, Turkey

September 2021

diclehankarakaya@gmail.com

Content

- 1. Introduction
- 2. Proposed Method
- 3. Experimental Results
- 4. Conclusion

1. Introduction Aim of the Study

≻Tone-mapped High Dynamic Range (HDR) Images

≻Over Exposed Pixels & Color Distortion

≻Information Loss & Noise

≻Correction of Saturated Pixels

Figure. Images containing saturated pixels

HDR : 96 bits/pixel LDR*: 24 bits/pixel

Figure. Robot, LDR and HDR comparison [2].

Figure. Sphere, LDR and HDR comparison [3].

*Low dynamic range.

1. Honig, S. and Werman, M. Image declipping with deep networks, in IEEE International Conference on Image Processing. Athens, Greece. 7 – 10 October 2018.

2. LDR vs HDR 1, http://damart3d.blogspot.com/2016/12/hdr-vs-ldr-image-based-lighting.html, (15.07.20).

3. LDR vs HDR 2, https://sudonull.com/post/105920-HDR-vs-LDR-implementation-of-HDR-Rendering, (15.07.20).

➢HDR Equipment Unaffordable

$\succ HDR-like Content from LDR Image Sequence [1] \longrightarrow MEF^*$

➢MEF → Jitter Effect [2], Ghosting Effect [3]

$\textcircled{} \longrightarrow \square$

* Multi-Exposure Fusion.

1. O.Ulucan, D.Karakaya and M. Turkan. (2021) Multi-exposure image fusion based on linear embeddings and watershed masking. Signal Processing, Vol. 178, pp. 107791.

2. Angelov, P. (2012) Sense and avoid in UAS: research and applications. United Kingdom: John Wiley & Sons.

3. Cai, J., Gu, S. and Zhang, L. (2018) Learning a deep single image contrast enhancer from multi-exposure images, IEEE Transactions on Image Processing, Vol. 27(4), pp. 2049–2062.

Hardware, Human Operator, Environmental based Drawback

If shortcoming can be eliminated with post-processing \longrightarrow

Effective for High-Quality Content

 $\blacktriangleright \text{One channel or two jointly clipped channels} \longrightarrow \text{Pixel based}$ $\vdash \text{Three jointly clipped channels} \longrightarrow \text{Patch based}$

To the best of available knowledge First individual approach for all cases First study employing LE^{*} in this research domain

2.1 One Channel Correction via Linear Embeddings

\rightarrow Pixel / Patch \longrightarrow Linear combination of neighbours [1]

Neighbour Embedding

Reconstruction of pixels or small regions from its neighbours [2]

Figure. Neighbor preserving mapping via LLE [2].

►LLE^{*} preserves the structure of a manifold [2]

* Locally linear embeddings.

1. Türkan, M., Thoreau, D. and Guillotel, P. Optimized neighbor embeddings for single-image super-resolution, in IEEE International Conference on Image Processing. Melbourne, VIC, Australia. 15-18 September 2013.

2. Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science, Vol. 290(5500), pp. 2323-2326.

2.1 One Channel Correction via Linear Embeddings

• Thresholding at 235 in *R*, *G*, *B* of image I separetely \longrightarrow Binary Mask

Two Assumptions

Figure. Channel-wise neighbours.

Figure. Pixel-wise neighbours $\mathcal{N}_1, \mathcal{N}_2$.

Table. Gradient angles in degrees and the corresponding positions of neighbours in I for clipped pixel α at row, column (r, c) are demonstrated.

Angle (degrees)	\mathcal{N}_1	\mathcal{N}_2
[0, 45] or [181, 225]	(r-1, c+1)	(<i>r</i> + 1, <i>c</i> − 1)
[46, 90] or [226, 270]	(<i>r</i> – 1, <i>c</i>)	(<i>r</i> + 1, <i>c</i>)
[91, 135] or [271, 315]	(r-1, c-1)	(<i>r</i> + 1, <i>c</i> + 1)
[136, 180] or [316, 360]	(<i>r</i> , <i>c</i> – 1)	(<i>r</i> , <i>c</i> + 1)

2.1 One Channel Correction via Linear Embeddings

 \succ Let us assume that α is in *R* then w_{α}^{G} , w_{α}^{B*} ;

$$\{w_{\alpha}^{G}, w_{\alpha}^{B}\} = \underset{\{w_{1}, w_{2}\}}{\operatorname{argmin}} \left\| \begin{bmatrix} R_{\mathcal{N}_{1}} \\ R_{\mathcal{N}_{2}} \end{bmatrix} - \begin{bmatrix} G_{\mathcal{N}_{1}} & B_{\mathcal{N}_{1}} \\ G_{\mathcal{N}_{2}} & B_{\mathcal{N}_{2}} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \right\|_{2}^{2}$$
(Eqn.1)
s. t. $w_{1} + w_{2} = 1^{**}$

$$R_{\alpha} = w_{\alpha}^{G} \cdot G_{\alpha} + w_{\alpha}^{B} \cdot B_{\alpha}$$
 (Eqn.2)

* w^G_α and w^B_α represent the reconstruction weights for *G* and *B* respectively.

** For translation and rescaling invariance.

2.1 One Channel Correction via Linear Embeddings

Figure. Image (I) with one-channel clipped pixels in magenta, map G and one channel corrected image (I_1) .

➢ Mapping all pixels → 8-bit image
➢ Map G → Erosion, morphological reconstruction, dilation and a second morphological reconstruction
➢ Sliding Window operation → $I_1 = G \cdot I_{SW} + (1 - G) \cdot I$ (Eqn.1)

2.2 Two Channel Correction via Difference of Pixel Intensities

Masks of $\{R, G\}$, $\{R, B\}$ and $\{G, B\}$ jointly clipped pixels

Connected components processed individually ✓ More sensitive

Determination of the pixel with the highest priority

≻Pixel with highest confidence & located at strong edges / structures [1]

Priority of a pixel $x \in \beta^* \longrightarrow C(x).D(x)$ (Eqn.1) $C(x) = \frac{\sum_{\gamma \in P_x \cap S} C_{\gamma}}{|P_x|} \quad (Eqn.2) \quad D(x) = \frac{|\nabla I_x^{\perp} \cdot \omega_x|}{255} \quad (Eqn.3)$ C: confidence term D: data term γ : most likely candidate to match x P_x :a patch of size 5×5 pixels centred around x $|P_x|$: the number pixels in P_x ω_x : unit vector orthogonal to the contour

* contour

1. Criminisi, A., Pérez, P. and Toyama, K. (2004) Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, Vol. 13(9), pp. 1200–1212.

2.2 Two Channel Correction via Difference of Pixel Intensities

Neighbours of a possess a similar intensity value with the pixel of interest

> *R* and *B* are clipped

Gradient map of the image I_1

 ✓ Avoid incorrect estimations at sharp color changeovers Third non-clipped channel is used for saturation correction

 $R_{\alpha} = G_{\alpha} + \frac{\left(R_{\mathcal{N}_1} - G_{\mathcal{N}_1}\right) + \left(R_{\mathcal{N}_2} - G_{\mathcal{N}_2}\right)}{2}$ (Eqn.1)

$$B_{\alpha} = G_{\alpha} + \frac{(B_{N_1} - G_{N_1}) + (B_{N_2} - G_{N_2})}{2}$$
(Eqn.2)

If the differences have distinct signs

Offset according to absolute values
Sign determined by the largest difference magnitude

2.2 Two Channel Correction via Difference of Pixel Intensities

Figure. I_1 with two-channel clipped pixels in magenta, I_2 , and I_2 with three-channel clipped pixels in magenta.

2.3 Three-channel Correction via Gradient-guided Block-search

Most challenging step

Block-search approach partly based on exemplarbased inpainting [1]

Mask & Connected components are extracted

Priority computation

 \succ Search-Region Formation \longrightarrow 11-pixel distance from the connected component border

>4 pixels in the local patch gradient direction

Directed Template

2.3 Three-channel Correction via Gradient-guided Block-search

> 5x5 window through search region \longrightarrow Centring pixel of the minimum intensity distance window

> Closest 8 spatial neighbours of α

• Replaced with the obtained value to avoid sharp color changeovers and probable artefacts

Figure. I_3 and I_3 with two- and three-channel clipped pixels in magenta.

2.4 Post-processing

CIELab — Process perceptually similar colors & Only preserve perceptually significant edges \geq > Two- and three-channel correction masks are combined

Bilateral filter is adopted [1]

Figure. Input and output images.

Bilateral filter

Degree of smoothing: variance of all pixels to be applied Neighbourhood size: 101 Standard deviation of spatial Gaussian smoothing kernel: 10

Dino, Sink, Exploratorium, Watering Can and *Butterflies* are courtesy of Erik Reinhard & Tania Pouli *Belgium House, Landscape, Memorial* and *Mountain* belong to the study of Yeganeh & Wang [1]

Figure. The dataset: Dino, Sink, Exploratorium, Watering Can, Butterflies, Belgium House, Landscape, Memorial, Mountain.

- Experimental Setup: Intel(R) Core (TM) i7-8500U CPU @1.80 GHz 4-Core 8GB RAM machine using MATLAB R2019b
- Comparisons: Masood [2] and Steffens [3]
- Proposed: 11.56sec, Masood: 7.90sec, Steffens: 24.03sec
- 1. Yeganeh H. and Wang Z. (2012) Objective quality assessment of tone-mapped images, IEEE Transactions on Image Processing, vol. 22 (2), pp. 657–667.

3. Steffens, C. R., Huttner, V., Messias, L. R. V., Drews, P.L.J., Botelho, S.S.C. and Guerra, R.S. CNN-based luminance and color correction for ill-exposed images, in IEEE International Conference on Image Processing., Taipei, Taiwan, 22-25 September 2019.

^{2.} Masood, S. Z., Zhu, J. and Tappen, M. F. (2009) Automatic correction of saturated regions in photographs using cross-channel correlation, Computer Graphics Forum, Vol. 28(7), pp. 1861–1869.

Peak-to-Signal Ratio (PSNR) & Structural Similarity Index (SSIM) & Visual Information Fidelty (VIF)

Higher scores: Better outcomes

range [0; 1] Results closer to 1: Superior perceptual quality

Table. Statistical comparisons of Masood, Steffens and the proposed algorithm.

	Masood			Steffens			Proposed		
	PSNR (dB)	SSIM	VIF	PSNR (dB)	SSIM	VIF	PSNR (dB)	SSIM	VIF
Dino	27.481	0.979	0.851	15.082	0.884	0.722	36.830	0.995	0.927
Sink	28.856	0.979	0.780	18.055	0.889	0.732	32.492	0.995	0.963
Exploratorium	26.549	0.963	0.838	14.220	0.768	0.492	29.820	0.980	0.977
Watering Can	30.502	0.985	0.872	15.049	0.863	0.708	29.365	0.974	0.991
Butterflies	22.872	0.961	0.741	13.588	0.827	0.724	32.070	0.972	0.988
Belgium House	30.929	0.990	0.912	21.333	0.792	0.705	51.997	0.999	0.989
Landscape	41.155	0.997	0.979	18.247	0.828	0.774	47.566	0.999	0.990
Memorial	35.713	0.996	0.944	22.574	0.884	0.742	37.974	0.995	0.983
Mountain	20.534	0.953	0.878	13.766	0.738	0.702	38.505	0.983	0.949
Average	29.399	0.978	0.866	16.879	0.830	0.700	37.402	0.988	0.973

Figure. Butterflies, (Left-to-right): Input, Masood, Steffens and Proposed.

Figure. Watering Can, (Left-to-right): Input, Masood, Steffens and Proposed.

Figure. Landscape, (Left-to-right): Input, Masood, Steffens and Proposed.

Figure. Memorial, (Left-to-right): Input, Masood, Steffens and Proposed.

Figure. Belgium House, (Left-to-right): Input, Masood, Steffens and Proposed.

4. Conclusion

- ≻Information loss in highlights may occur due to clipping
- ≻Adopting LE for the first time
- ≻Constructing a case-oriented algorithm
- >On average both visually and statistically superior results
- ≻Can be extended for raw/processed LDR images

≻Recover low-light regions in tone-mapped images

Thank you for listening!