Compact Kernel Models for Acoustic Modeling via Random Feature Selection

Main Idea

- Kernel approximation methods often require very many random features for good performance.
- We propose a simple feature selection method for reducing the number of required features, and show it is effective in acoustic modeling.
- We perform comparisons to DNNs, and achieve comparable WER results on Broadcast News (50 hour) dataset.

Avner May^{*}, Michael Collins^{*}, Daniel Hsu^{*}, Brian Kingsbury[†] *Columbia University Computer Science Department, [†]IBM TJ Watson Research Center

Background and Motivation

Kernel Approximation

- $K(x_i, x_j) \approx z(x_i)^T z(x_j)$
- Random Fourier Features [1]: $z_i(x) = \sqrt{2/D} \cos(w_i^T x + b_i)$ RBF: $w_i \sim Normal, b_i \sim Unif[0,2\pi]$

Acoustic Modeling

- $p(y \mid x; \theta) = \exp\left(\theta_y^T z(x)\right) / \sum_{\hat{y}} \exp\left(\theta_{\hat{y}}^T z(x)\right)$
- Maximizing regularized log-likelihood is convex.
- Similar to single hidden-layer neural net, with cosine activation function, and random first layer weights.

1] A. Rahimi and B. Recht, "Random Features for Large-Scale Kernel Machines," in Proceedings of NIPS, 2007

Broadcast News Results

Comparison to DNNs

Method	Cantonese		Bengali		
Method	Cross-Entropy	CER	Cross-Entropy	WER	
Best DNN	1.81	67.3%	1.28	71.3%	
Best Kernel	1.81	68.6%	1.30	72.7%	
Method	BN50 (CE LR Decay)		BN50 ("ERP"[2] LR Decay)		
	Cross-Entropy	WER	Cross-Entropy	WER	
Best DNN	2.04	16.5%	2.35	16.5%	
Best Kernel	2.00	17.1%	2.06	16.6%	

[2] ICASSP 2016: USC, Columbia, IBM. "A Comparison Between Deep Neural Networks and Kernel Acoustic Models for Speech Recognition." **Come See Poster Tomorrow!!**

Dataset	# Train	# Heldout	# Test	# Classes
Cantonese	7.7M	1M	7M	1000
Bengali	7.5M	0.9M	7.2M	1000
Broadcast News: 50 hour	16.2M	1.8M	N/A	5000

Kernels Used

Kernel	Formula for $K(x,y)$	Dist. for W
Laplacian	$\exp\left(-\lambda x-y _1^2 ight)$	Cauchy
Gaussian	$\exp\left(-\frac{1}{2\sigma^2} x-y _2^2\right)$	Normal
"K-Sparse Gaussian"	$\sum_{F \subseteq [d]: F = k} \exp\left(-\frac{1}{2\sigma^2} x_F - y_F _2^2\right)$	"Sparse Normal"

Effects of Feature Selection

Do features selected in iteration t survive future rounds?

Are some input features more important than others?

Feature Selection Algorithm

input Target number of random features D, selection schedule $0 = s_0 < s_1 < \cdots < s_T = D$. **initialize** feature pool $P := \emptyset$. for t = 1, 2, ..., T do Generate $D - s_{t-1}$ new random features, and add them to P. Learn weights $W \in \mathbb{R}^{P \times C}$ over the D features in P using a single pass of SGD over random subset of data. Select s_t features $j \in P$ for which $\sum_{c=1}^{C} W_{i,c}^2$ are largest;

discard the remaining $D - s_t$. end for

return Final collection of *D* random features *P*

Future Work

- Why are DNNs typically better than kernels models in terms of WER, when they have comparable crossentropy?
- Can we reduce the number of parameters needed by the kernel models, and maintain strong performance? Could we then train models with even more random features?
- How does feature selection compare with backpropagation?
- Can we leverage sparse random projections for faster training?
- Theoretical guarantees for algorithm?