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data is a challenging problem whose difficulty is exacerbated by A o 145/95 0 Tow artntieyanzshanmugamz b - com eb@cesiicolumbraedu

the presence of treatment assignment bias. In this work, we pro- B 26 135/80 0 Low

pose a new way to estimate the ITE using the domain generaliza-

A X . . PR C 58 130/70 1 Low Abstract

tion framework of invariant risk minimization (IRM). IRM uses data D 50 145/80 1 High

from multiple domains, learns predictors that do not exploit spurious One fundamental problem in the empirical sciences is of reconstructing the causal
E 24 150/85 1 Low structure that underlies a phenomenon of interest through observation and ex-

domain-dependent factors, and generalizes better to unseen domains.
‘We propose an IRM-based ITE estimator aimed at tackling treat-
ment assignment bias when there is little support overlap between
the control group and the treatment group. We accomplish this by
creating diversity: given a single dataset, we split the data into mul-
tiple domains artificially. These diverse domains are then exploited
by IRM to more effectively generalize regression-based models to
data regions that lack support overlap. We show gains over classi-
cal regression approaches to ITE estimation in settings when support
mismatch is more pronounced.

Index Terms— Causal inference, individual treatment effect
estimation, invariant risk minimization

from classical supervised learning because we never observe the ITE
in our training data. For example, in Table 1/we do not observe the
blood sugar under the treatment for patients in the control group and
the blood sugar under the control for patients in the treatment group.

Unlike RCTs, observational data is often prone to treatment as-
signment bias [9]. For instance, patients receiving drug ‘0’ may have
a higher natural tendency (due to their age) to have low blood sugar
than patients receiving drug ‘1’. In other words, sub-populations re-
ceiving different treatments can have very different distributions, and
atraditional supervised learning model trained to predict the effect of
treatment would fail to generalize well to the entire population. This

CANDLE: An Image Dataset for Causal Analysis in Disentangled

perimentation. While there exists a plethora of methods capable of learning the
equivalence class of causal structures that are compatible with observations, it is
less well-understood how to systematically combine observations and experiments
to reconstruct the underlying structure. In this paper. we investigate the task of
structural learning in non-Markovian systems (i.e., when latent variables affect
more than one observable) from a combination of observational and soft experi-
mental data when the interventional targets are unknown. Using causal invariances
found across the collection of observational and interventional distributions (not
only conditional independences), we define a property called W-Markov that con-
nects these distributions to a pair consisting of (1) a causal graph 2 and (2) a set
of interventional targets Z. Building on this property. our main contributions are
two-fold: First, we provide a graphical characterization that allows one to test
whether two causal graphs with possibly different sets of interventional targets
belong to the same W-Markov equivalence class. Second. we develop an algorithm
capable of harnessing the collection of data to learn the corresponding equivalence
class. We then prove that this algorithm is sound and complete. in the sense that
it is the most informative in the sample limit. i.e., it discovers as many tails and
arrowheads as can be oriented within a W-Markov equivalence class.
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Confounding effects are inevitable in real-world obser-
ations. It is useful to know how the data looks like without
‘onfounding. Coming up with methods that identify and re-
nove confounding effects are important for various down-
tream tasks like classification, counterfactual data aug-
nentation, etc. We develop an image dataset for Causal
\Nalysis in DisentangLed rEpresentations(CANDLE). We
ilso propose two metrics to measure the level of disentan-
1lement achieved by any model under confounding effects.
Ve empirically analyze the disentanglement capabilities of
xisting methods on dSprites and CANDLE datasets.
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Figure 1: Sample images from CANDLE.

current models either assume confounding is not present, or
ignore it even if it is. We encourage models that consider
confounding by creating a dataset with both observed and
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1. Introduction

Interpretation of a machine learning model is the process wherein we try to understand
the predictions of a machine learning model.
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1. Introduction (cont...)

Why do we need interpretable Machine learning ?

Who is likely to Machine learning Who should be eligible

commit another crime? \ creates bias for same-day delivery?
O O
O O
O Who hears about
Who sees ads for o—" \. career opportunities
good housing? in STEM?
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2. Interpretability Methods

Traditional Interpretable methods
Inherently interpretable models.

Post-hoc interpretable models.

Causal Interpretability



2. Interpretability Methods

Inherently interpretable models
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2. Interpretability Methods (cont...)

Post-hoc Interpretability

Local Interpretable Model-Agnostic Explanations

M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, 2016

Saliency Maps

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European conference on computer vision, 2014

Example Based Explanations

B. Kim, R. Khanna, and O. O. Koyejo. Examples are not enough, learn to criticize! criticism for interpretability. In Advances in Neural Information Processing
Systems, 2016

Feature Visualization

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network. University of Montreal

Explaining by Base Interpretable Model

M. Craven and J. W. Shavlik. Extracting tree structured representations of trained networks. In Advances in neural information processing systems,2016
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3. Causal Inference

Structural Causal Model (SCM)

An SCM is a 4-tuple variable M(X, U, f, P,)

X : finite set of endogenous variables
U : finite set of exogenous variables

f: set of function {f,, f,, ... , f,}, represents casual mechanism such that,
xj = f{(Pa(x;), u;) Vx;e X
Pa(x;) < (X\{x} v U

Original SCM is represented by below distribution function

Y = P(y | X1, X3, X3)

Interventional SCM is represented as:

Y = P(y | x4, do(X; = Xfixed)s X3)

Original SCM
Ux'l._ __________ X‘I
UXZ._ __________ X2 Y
e S >:3
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4. Prior Work (cont....)

Axioms of Attribution
Sensitivity'

Vx; €X, f(x;) # f(xPaseliney — A{(x) #0

Implementation Invariance’

Vx; €X, fix) = falxi) = f1 = f

Completeness'

f(x) = %47 ()

Symmetry Preserving'

f(x, y) = fly, x) = A (x) = AT (y)

Input Invariance?

ISundararajan et al. (2017). ICML
2 Kindermans et al. (2017). NIPS
3 Ribeiro et al. (2016). ACM SIGKDD

LIMES3 - Locally Interpretable Model-Agnostic Explanations

Perturbation-based method

Generates an explanation for an instance with a

surrogate model

Each instance has a different interpretable model for

explanation.
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TShrikumar et al. (2017). ICML

4. Prior Work (Cont’.’) 2 Sundararajan et al. (2017). ICML

DeepLIFT! - Deep Learning Important Features - Integrated Gradients? : Integral of gradients

: : : averaged along a path from baseline to a
Assigns importance score based on difference from 9 gap

: : articular feature
reference policy (baseline) P

Addresses model saturation and thresholding problem. . 1Gi(x) = (x; — x}) f01( aF(x'+:l(x -x')) ot
Xi

Approximates instantaneous gradients to explain the

change in slope w.r.t baseline

6 y = ReLU(x) = max(0, x) — i) H]ﬁ n sig(t)
s _ Data point we care about:
1. Calculating the slope

¢ Ay -2 _ 0.8 x=-8y~1

; T

) 2. Finding the feature importance 0()

Ay

0 Ax XE =—-4x%x05=-2 0

-1 Data point we care about: i . .

) oz ' Interesting gradients

=— = 0 3 7 Baseline: 0.29
Pure gradient based approach would have assigned an x=-8y~0 ;
importance score of 1 for (x,y) = (-2, 0) with baseline as ‘ :
(2, 2). -8 -6 -4 -2 2 4 6 8




4. Prior Work (cont...)

Probabilistic based causal approach’ Chattopadhyay et al. (2019). ICML

Computes causal effect of each feature on the output.

Considers neural network model as SCM to perform causal estimation.

Our work is inspired by this prior work on using ACE in neural network.
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5. Proposed Method

Absolute area of ACE (A-ACE)

ACEc)z]o(xi E(0y,0,)) = fo?: Ely | do(xi = a)] - E[y | do(xi = x)] 0

A-ACE = f(j‘f |ACE| dax

Here -
y is Average Causal Effect (ACE) estimate w.r.t feature a

a; and a, are minimum and maximum interventional values for feature a



5. Proposed Method

Derivation

A-ACE

A—ACEY, i ccaany = fff |E[y | do(x; = @)] - E[y | do(x; = x')]| da
Ely | do(x; = a)] = [yp(y |do(x; _ ) dy

Employs Taylor series expansion to compute the interventional expectation

Elfy ()] do(x; = @)] ~ fy () + Tr(V? fy () El(l;- p)(l— w)7) | do(x; = )]
u= [ﬂl' Uz, ""ﬂk]T
wj = E[x; |[do(x; = a)]

ll == [xl, xz, ,xk]



5. Proposed Method (cont...)

Limitations of ACE for interpretability

Causal analysis is possible through intervention on the model.

ACE doesn’t exploit the variation with changing levels of interventional values.



5. Proposed Method (cont...)

Significance of the method

A-ACE improves the interpretability quantification by exploiting the magnitude of causal effect.

Interpretability is possible only by localizing discriminative regions.

In our experiments we show that the behaviour at the discriminative regions can be captured using the proposed method
(A-ACE).

We have incorporated three types of regions for MNIST - pixels common to both the classes, distinguishing
pixels, and background pixels.

For ILSVRC dataset we have included regions related to class; and background pixels to interpret the most
relevant regions of class object learnt by the model to classify for class;
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6. MNIST digits and results 5vs 6

Absolute Area
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6. MNIST digits and results Ovs 8

Absolute area for O vs 8
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6. MNIST digits and results

Absolute Area
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mm Type 2
mm Type 3

(13, 15) (15, 15)

T

(16, 14)

(14, 16) (14,15) (7,10)

(7,11) (7,12) (7.13)
Pixel Location

(7, 14)

(7, 15)

(5.5)

(5, 25)

(20, 5)

(20, 25)




6. MNIST digits and results Ovs 9
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7. Comparison with SOTA (CNN Fixation)

ResNet-101 model
trained on ILSVRC dataset
is used. The sample
image is taken from
validation dataset

(a) Input Image (b) CNN Fixation (c) Proposed

AT 16 A LY ol || ) 1 A ‘N AN
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8. Limitations

A-ACE estimation requires full interventional range for each input feature.

Computational time of A-ACE is directly proportional to the model’s

complexity (number of layers, size of layers etc.)
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9. Conclusion

Proposed method can be easily extended to complex models by appropriately

changing the shape of input data, gradients and hessian matrix, mean and covariance

matrix.

Classification problem reformulated as a binary classification problem. We consistently

find peak at distinguishing pixels to be at least 33% higher than other for MNIST data
and 10x higher in ILSVRC data.

A-ACE exploits the magnitude of the causal effect irrespective of the direction. This

leads to improved quantification of interpretability



