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Interpretation of a machine learning model is the process wherein we try to understand 
the predictions of a machine learning model.

1. Introduction



1. Introduction (cont…)

• Fairness
• Features learnt & model debugging
• Regulations

Why do we need interpretable Machine learning ?
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2. Interpretability Methods
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2. Interpretability Methods

• Decision Trees
• Rule based 

models
• Linear Regression
• Attention 

Networks

• Disentangled learning
• PCA
• Spectrum Analysis

Inherently interpretable models



2. Interpretability Methods (cont…)
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3. Causal Inference
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4. Prior Work (cont.…)
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4. Prior Work (cont…)
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Pure gradient based approach would  have assigned an 
importance score of 1 for (x,y) = (-2, 0) with baseline as 
(2, 2).
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1 Shrikumar et al. (2017). ICML
2 Sundararajan et al. (2017). ICML



4. Prior Work (cont…)
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5. Proposed Method
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5. Proposed Method
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5. Proposed Method (cont…)
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5. Proposed Method (cont…)
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6. MNIST digits and results 5 vs 6



6. MNIST digits and results 0 vs 8



6. MNIST digits and results 1 vs 7



6. MNIST digits and results 0 vs 9
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7. Comparison with SOTA (CNN Fixation)

ResNet-101 model 
trained on ILSVRC dataset 
is used. The sample 
image is taken from 
validation dataset



Contents
1. Introduction

2. Interpretability Methods

3. Causal Inference 

4. Prior Work 

5. Proposed Method

6. MNIST digits & results

7. Comparison with SOTA (CNN Fixation)

8.

9. Conclusion



8. Limitations
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9. Conclusion
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