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PROBLEM STATEMENT
• Given an uncalibrated monocular video where a

piece-varying non-rigid shape can be observed.
• We want to jointly recover the motion of the cam-

era, the 3D non-rigid shape model and the tem-
poral grouping into deformations.
• We present a piecewise Bézier Space to model

non-rigid motions with physical meaning, that
can automatically enforce C0, C1 and C2 conti-
nuities. No training data are needed.
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PIECEWISE BÉZIER CURVES
• A Bézier curve p(s) is defined by a linear com-

bination of K Bernstein basis polynomials of de-
gree K − 1 restricted to the continuous interval
s = [0, . . . , 1] as:

p(s) =
K∑

k=1

(
K − 1
k − 1

)
sk−1(1− s)K−kck =

K∑
k=1

bk(s)ck

with bk(s) and ck = [cxk, cyk, czk]
> are the k-th

Bernstein basis and 3D control point, respectively.(
K − 1
k − 1

)
is a binomial coefficient.

• A global curve is represented by low-order K =
{3, 4} piecewise Bézier curves.

• Quadratic (qua.) and cubic (cub.) curves are
used as a function of control points K, defining
the number of pieces (P) and transitions (T).
• C0-continuity is guaranteed by construction as a

unique control point acts as the last and first in
two pieces.

K P T Type K P T Type
3 1 0 1 qua. 10 3 2 3 cub.
4 1 0 1 cub. 11 4 3 2 qua. + 2 cub.
5 2 1 2 qua. 12 4 3 1 qua. + 3 cub.
6 2 1 1 qua. + 1 cub. 13 4 3 4 cub.
7 2 1 2 cub. 14 5 4 2 qua. + 3 cub.
8 3 2 2 qua. + 1 cub. 15 5 4 1 qua. + 4 cub.
9 3 2 1 qua. + 2 cub. 16 5 4 5 cub.

3D DYNAMIC SHAPE, GROUPING AND MOTION FROM 2D POINT TRACKS

• Under orthography, a time-deforming 3D sce-
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• Piecewise Bézier curves are used for modelling
the evolution of every point coordinate over time.
• Shape S = BC, with B ∈ R3F×3K a known ma-

trix with predefined piecewise basis, and C ∈
R3K×N a matrix of unknown control points as:

B =

I3 ⊗ (b1(s))>

...
I3 ⊗ (bF (s))>

 , C =
[
κ1 . . . κN

]
• N 3K-dimensional vectors as κn =

[cnx1, . . . , c
n
xK , c

n
y1, . . . , c

n
yK , c

n
z1, . . . , c

n
zK ]>, and F K-

dimensional vectors bf (s) = [b1(s), . . . , bK(s)]>.

• C1 and C2 continuities can be enforced by the con-
straint (I3⊗M)C = (I3⊗N)C, with M and N known
matrices.

• Considering temporal smoothness priors, a union of
temporal piecewise subspaces, and orthogonality, we
propose to solve the optimization problem:

arg min
Φ

‖ (V ⊗ 12)�
(
W − W̄

)
‖2F + β‖W‖∗

+ α(‖S−BC‖F + ‖(I3 ⊗ (M−N))C‖F )

+ γ(‖Ŝ‖∗ + ‖T‖∗) + λ‖E‖2,1 + ζg(Rf )

subject to W = GS, S = (I3 ⊗ Ŝ>)A

Ŝ = ŜT + E, ŜF = 0, RfRf> = I2

• We present a two-step strategy to minimize the
cost function: 1) completing missing entries, 2)
estimating camera rotation, clustering and 3D
reconstruction.
• Augmented Lagrange multipliers are considered.

EXPERIMENTAL RESULTS
Quantitative Evaluation: Human Motion Capture Sequences

PPPPPPPPData
Met. EM-PPCA [?] MP [?] PTA [?] CSF [?] KSTA [?] BMM [?] PPTA [?] URS [?] TRUS [?] (Ours)

eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS eG[%] eR eS eG[%] eR eS eG[%]
Noise-free observations

Drink .186 .261(7) .330 .357(12) .006 .025(13) .006 .022(6) .006 .020(12) .007 .027(12) .006 .011(30) .006 .009 0.8(2) .006 .009 0.6(2) .005 .009 0.6(2)
Stretch .749 .458(7) .832 .900(8) .055 .109(12) .049 .071(8) .049 .064(11) .068 .103(11) .058 .084(11) .058 .061 4.1(3) .058 .060 4.1(3) .048 .062 4.3(3)
Yoga .688 .445(8) .854 .786(2) .106 .163(11) .102 .147(7) .102 .148(7) .088 .115(10) .106 .158(11) .106 .143 0.3(2) .091 .133 0.2(2) .076 .111 0.1(2)
Pick-up .417 .423(14) .249 .429(5) .155 .237(12) .155 .230(6) .155 .233(6) .121 .173(12) .154 .235(12) .154 .221 3.7(3) .147 .209 3.0(3) .104 .138 1.4(3)
Dance – .339(4) – .271(5) – .296(5) – .271(2) – .249(4) – .188(10) – .229(4) – .165 – – .150 – – .143 –
Average error: .385 .549 .166 .148 .143 .121 .143 .119 .112 .092
Relative error: 4.16 5.93 1.79 1.60 1.54 1.31 1.54 1.28 1.21 1.00

Noisy observations
Drink .231 .250(7) .329 .517(12) .043 .045(13) .043 .044(6) .043 .042(12) .044 .056(12) .042 .038(30) .042 .044 3.6(2) .036 .034 1.4(2) .037 .036 1.3(2)
Stretch .819 .886(7) .872 .975(8) .091 .144(12) .091 .121(8) .091 .166(11) .098 .183(11) .091 .123(11) .091 .119 8.4(3) .091 .119 5.1(3) .091 .120 4.9(3)
Yoga .700 .507(8) .858 .791(2) .124 .174(11) .125 .168(7) .125 .172(7) .136 .195(10) .124 .174(11) .125 .167 0.0(2) .112 .162 0.2(2) .115 .164 0.2(2)
Pick-up .499 .807(14) .250 .407(5) .148 .228(12) .148 .224(6) .148 .222(6) .141 .212(12) .148 .228(12) .148 .207 3.1(3) .147 .205 2.5(3) .103 .136 1.2(3)
Dance – .336(4) – .282(5) – .299(5) – .266(2) – .248(4) – .236(10) – .222(4) – .164 – – .157 – – .146 –
Average error: .557 .594 .178 .165 .170 .176 .157 .140 .135 .120
Relative error: 4.64 4.95 1.48 1.37 1.42 1.47 1.31 1.17 1.12 1.00

EM-PPCA (Expectation-Maximization Probabilistic Principal Component Analysis), MP (Metric Projections), PTA
(Point Trajectory Approach), CSF (Column Subspace Fitting), KSTA (Kernel Shape Trajectory Approach), BMM (Block
Matrix Approach), PPTA (Probabilistic Point Trajectory Approach), URS (Union of Regularized Subspaces), TRUS
(Temporal Regularized Union of Subspaces)

Errors as a function of K
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• Rotation and reconstruction errors:
Error reduction is consistent as K increases.
Error always remains within reasonable bounds.

• Accuracy and Generality:
Motion, 3D shape and grouping estimations.
Accurate solutions for both noise-free and noisy
observations.
Efficient approach in a commodity laptop.

Qualitative Evaluation: Sparse Face, and Dense Back and Heart
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• Sparse data:
Robust to self-occlusions and lack of visibility.
Detecting three type of deformations.

• Dense data:
Videos from 20,561 to 68,295 points.
Physically possible solutions.
A wide variety of scenarios.
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