Online Local Gaussian Process for Tensor-variate Regression: Application to Fast Reconstruction of Limb Movements From Brain Signal

INTRODUCTION

- Tensor Gaussian process (tensor GP) is a powerful Bayesian nonparametric regression method that flexibly models the nonlinearity of the tensorial data
- Computation load $O(N^3)$ of GP training restricts the applicability of tensor GP to large-scale problem in practice
- Tensor online local Gaussian process (tensor OLGP) is a computationally efficient framework for tensor-variate regression

TENSOR GP REGRESSION

• The training set $\mathcal{D} = \{(\mathfrak{X}_n, y_n)\}_{n=1}^N$ where the scalar output $y_n \in \mathbb{R}$ is generated by a nonlinear function $f(X_n)$ of the *D*-order tensor input $\mathfrak{X}_n \in \mathbb{R}^{I_1 \times \cdots \times I_D}$ with an additive Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

$$y_n = f(\mathfrak{X}_n) + \epsilon_n$$

• The latent function of tensor GP approach can be modeled by a GP

 $f(\mathfrak{X}) \sim \mathfrak{GP}(m(\mathfrak{X}), k(\mathfrak{X}, \mathfrak{X}')|\theta)$

• The covariance function $k(\mathcal{X}, \mathcal{X}')$ is product probabilistic kernel

$$k(\mathcal{X}, \mathcal{X}') = \alpha^2 \prod_{d=1}^{D} \exp\left(\frac{KL(p(\mathbf{x}|\Omega_d^{\mathcal{X}}) \parallel q(\mathbf{x}'|\Omega_d^{\mathcal{X}'}))}{-2\beta_d^2}\right)$$

The joint predictive distribution of the latent function is Guassian

$$p(f_*, \mathbf{y}|\mathcal{X}_*, \mathcal{X}, \theta, \sigma^2)$$

The conditional predictive distribution is also Gaussian

$$p(f_*|\mathcal{X}_*, \mathcal{X}, \mathbf{y}, \theta, \sigma^2) = \mathcal{N}(m_*, \sigma_*^2)$$
$$m_* = \mathbf{k}_{\mathcal{X}}^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$
$$\sigma_*^2 = k_* - \mathbf{k}_{\mathcal{X}}^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}_{\mathcal{X}}$$

Fensor OLGP Regression

- Stage 1 GP Experts Construction: Use the covariance function of tensor GP as a similarity measurement to sequentially partition the training data points into a number of small-sized experts
- **Stage 2 Local Prediction**: Find a fixed-number of local GP experts to make predictions (for given test tensorial inputs) with a Gaussian mixture

STAGE 1 GP EXPERTS CONSTRUCTION

- $w_k = k(\mathcal{X}_{new}, \mathcal{C}_k)$
- 4: end for
- 6: if $sim_t > w_{gen}$ then
- 8:
- 10:
- end if 11:
- 12:

13: else

- Create a new expert: 14:
- 16:
- 17: end if

STAGE 2 LOCAL PREDICTION

- Input-based Searching Strategy:
- Input-output-based Searching Strategy:
 - using tensor kernel function
- Weighted Local Prediction:
- $\bar{y}_k = \mathbf{k}_k (\mathfrak{X}_*, \mathfrak{X}_k)^T (\mathbf{K}_k + \sigma^2 \mathbf{I})^{-1} \mathbf{y}_k$ as follows

Ming Hou Yali Wang Brahim Chaib-draa

Laval University, Quebec, Canada

Algorithm 1 GP Experts Construction

1: Input: new tensor data pair $\{\mathcal{X}_{new}, y_{new}\}$ 2: for k = 1 to number of local experts R do Compute the similarity to the kth expert using probabilistic tensor kernel function (3):

5: Choose the nearest local expert t: $sim_t = \max(w_k)$ Insert $\{\mathcal{X}_{new}, y_{new}\}$ to the nearest local expert t: $\boldsymbol{\mathcal{X}}_t = [\boldsymbol{\mathcal{X}}_t, \boldsymbol{\mathcal{X}}_{new}], \mathbf{y}_t = [\mathbf{y}_t, y_{new}]$ if maximum number of data points is reached then delete another point by permutation

Update the corresponding kernel matrix \mathbf{K}_t by computing the kernel vector $\mathbf{k}_t(\mathcal{X}_{new}, \mathcal{X}_t)$ for \mathcal{X}_{new}

 $\mathcal{C}_{R+1} \doteq \mathcal{X}_{new}, \, \mathcal{X}_{R+1} = [\mathcal{X}_{new}], \, \mathbf{y}_{R+1} = [y_{new}]$ Initialize the new kernel matrix \mathbf{K}_{R+1}

• Find *M* local experts having the highest similarities with \mathfrak{X}_* among all the local experts according to tensor kernel function $w_k = k(\mathfrak{X}_*, \mathfrak{C}_k)$

Find its nearest local expert $\mathcal{C}_k \doteq \{\mathcal{X}_{\mathcal{C}_k}, y_{\mathcal{C}_k}\}$ from the input \mathcal{X} -space

Find *M* local experts $\{\mathcal{C}_m \doteq \{\mathcal{X}_{\mathcal{C}_m}, y_{\mathcal{C}_m}\}\}_{m=1}^M$ that are being closest to $y_{\mathcal{C}_k}$ in *y*-space among all the local expert centers as the candidates

• Use $w_k = k(\mathcal{X}_*, \mathcal{C}_k)$ as the weight of local expert *k*, and the prediction \hat{y}_* is the weighted combination from each local prediction

$$\hat{y}_* = rac{\sum_{k=1}^M w_k ar{y}_k}{\sum_{k=1}^M w_k}$$

Computational Complexity

	Partation + Training	Predictio
tensor GP	$O(N^2 I^{D+1} + N^3)$	$O(NI^{D+1} +$
tensor OLGP	$\mathcal{O}(NRI^{D+1} + NSI^{D+1} + S^3)$	$\mathcal{O}(RI^{D+1} + M(SI^{D}))$

ECOG FOOD TRACKING TASK DATASET

• Comparison of prediction of movement on shoulder marker along *x*-axis

Data siza zu	Mathod	RMSE	NLL	Running Time (s)			
Data SIZC, Wgen	WICHIOU			Training	Testing		
	tensor GP	3.05 ± 0.16	7.26 ± 0.57	1279.1 ± 9.2	2480.6 ± 16.7		
10000, 0.5	tensor <i>x</i> -OLGP	4.71 ± 0.15	2.86 ± 0.10	321.0 ± 3.9	503.5 ± 4.7		
	tensor <i>xy</i> -OLGP	4.39 ± 0.18	4.53 ± 0.43	321.0 ± 3.9	492.4 ± 8.3		
10000 0.6	tensor <i>x</i> -OLGP	4.56 ± 0.14	2.66 ± 0.07	511.1 ± 3.2	829.9 ± 6.4		
10000, 0.0	tensor <i>xy</i> -OLGP	3.82 ± 0.15	4.03 ± 0.41	511.1 ± 3.2	822.0 ± 6.8		
	tensor GP	3.40 ± 0.19	10.15 ± 0.81	19141.9 ± 163.5	39152.4 ± 230.9		
36000, 0.4	tensor <i>x</i> -OLGP	5.77 ± 0.19	3.18 ± 0.12	2819.9 ± 37.3	5135.2 ± 66.3		
	tensor <i>xy</i> -OLGP	5.62 ± 0.24	4.67 ± 0.48	2819.9 ± 37.3	4503.0 ± 48.1		

Comparison vs. number of training samples and vs. number of local experts

Conclusion

- A new tensor-variate local GP regression framework has been introduced, it successfully adapts the local GP modeling to the tensor input space
- Large data is efficiently processed by several small-sized GP in an online way

