Multi-View Human Model Fitting Using Bone Orientation and Joints Triangulation

Eric Paquette

Carlos Vázquez

Problem Statement

I. Related Work

J: joints regressor - joints as a function of the body shape

 $\mathbf{\bar{T}} + B_S(\vec{eta}), \, J(\vec{eta})$

 $W(T_P(\vec{\beta}, \vec{\theta}), J(\vec{\beta}), \vec{\theta}, \mathcal{W})$

5

 $ar{\mathbf{T}}, \mathcal{W}$

SMPL - Take Away

(d) $W(T_P(\vec{\beta}, \vec{\theta}), J(\vec{\beta}), \vec{\theta}, \mathcal{W})$

Blend skinning

 2 parameters to be specified by users (shape β and pose θ)

PCA and optimization to learn implicit parameters

MuVS - Huang et al. (2017) **2D Joints** Optimization B θ $E(\beta, \theta)$

Silhouette

7

MuVS - Overview

MuVS - Objective Function

$$E(\beta,\theta) = \lambda_{\theta} E_{\theta}(\theta) + \lambda_{\beta} E_{\beta}(\beta) + \sum_{v=1}^{V} E_{J}(\beta,\theta;K_{v},J_{est}^{v}) + E_{S}(\beta,\theta;K_{v},U_{v})$$

MuVS - Objective Function

pose prior

$$E(\beta,\theta) = \lambda_{\theta} E_{\theta}(\theta) + \lambda_{\beta} E_{\beta}(\beta) + \sum_{v=1}^{V} E_{J}(\beta,\theta;K_{v},J_{est}^{v}) + E_{S}(\beta,\theta;K_{v},U_{v})$$

To favor probable poses and penalize improbable ones

Learned from a Mocap dataset

MuVS – Objective Function

pose prior shape prior
$$E(\beta, \theta) = \lambda_{\theta} E_{\theta}(\theta) + \lambda_{\beta} E_{\beta}(\beta) + \sum_{v=1}^{V} E_{J}(\beta, \theta; K_{v}, J_{est}^{v}) + E_{S}(\beta, \theta; K_{v}, U_{v})$$

To favor probable shapes and penalize less probable ones

Built from SMPL's PCA

MuVS - Objective Function

pose prior shape prior

$$E(\beta, \theta) = \lambda_{\theta} E_{\theta}(\theta) + \lambda_{\beta} E_{\beta}(\beta) + \sum_{v=1}^{V} E_{J}(\beta, \theta; K_{v}, J_{est}^{v}) + E_{S}(\beta, \theta; K_{v}, U_{v})$$
projected joints
error

 K_v : view #v camera parameters (intrinsic & extrinsic)

 J_{est}^{v} : view #v estimated 2D joints

MuVS - Objective Function

$$\begin{split} & \text{pose prior shape prior} \\ E(\beta,\theta) = \lambda_{\theta} \overline{E_{\theta}(\theta)} + \lambda_{\beta} \overline{E_{\beta}(\beta)} + \sum_{v=1}^{V} \overline{E_{J}(\beta,\theta;K_{v},J_{\text{est}}^{v})} + \overline{E_{S}(\beta,\theta;K_{v},U_{v})} \\ & \text{projected joints silhouette} \\ & \text{error error} \end{split}$$

 U_{ν} : view #v estimated silhouette

MuVS - Optimization & Issues

$$\begin{split} & \text{pose prior shape prior} \\ E(\beta, \theta) = \lambda_{\theta} \overline{E_{\theta}(\theta)} + \lambda_{\beta} \overline{E_{\beta}(\beta)} + \sum_{v=1}^{V} \overline{E_{J}(\beta, \theta; K_{v}, J_{est}^{v})} + \overline{E_{S}(\beta, \theta; K_{v}, U_{v})} \\ & \text{projected joints silhouette} \\ & \text{error error} \end{split}$$

MuVS - Optimization & Issues

$$\begin{array}{ll} \textbf{pose prior shape prior} \\ E(\beta, \theta) = \lambda_{\theta} \overline{E_{\theta}(\theta)} + \lambda_{\beta} \overline{E_{\beta}(\beta)} + \sum_{v=1}^{V} \overline{E_{J}(\beta, \theta; K_{v}, J_{est}^{v})} + \overline{E_{S}(\beta, \theta; K_{v}, U_{v})} \\ \textbf{projected joints silhouette} \\ \textbf{error error} \end{array}$$

2. Our Approach

3D Pose Triangulation (Iskakov et al. (2019))

19

Ours - Overview

Ours – Bone Orientation SMPL joints (3D) $E_{\text{pose}}(\vec{\theta}) = \lambda_{\theta} E_{\theta}(\vec{\theta}) + \lambda_{\text{bone}} \sum_{b \in B} ||\Phi(J(\vec{\beta}, \vec{\theta}), b) - \Phi(J_{3D}, b)||_{2}^{2}$

B: Set of all bones

Triangulated joints

L2 normalization
$$\Phi(J, b) = \frac{J_{\text{child}(b)} - J_{\text{parent}(b)}}{||J_{\text{child}(b)} - J_{\text{parent}(b)}||_2}$$

Decouple pose vs shape

Ours - Overview

Ours – Shape & Pose

23

3. Evaluation and Discussion

Joints - SMPL vs. Human3.6M

Large shift in position between the two models

25

26

Evaluation on Human3.6M

S: Silhouettes

T: Temporal

SV: Shift vectors

BOC: Bone orientation step

Mean Per Joint Position Error (mm)

Method	Shape	PA	MV	MPJPE
Kanazawa et al. (2018)	Yes	Yes	No	66.65
Trumble <i>et al.</i> (2018)	No	No	Yes	62.50
Kolotouros et al. (2019a)	Yes	Yes	No	62.00
Pavlakos et al. (2017b)	No	No	Yes	56.89
MuVS ^{S, T}	Yes	Yes	Yes	47.09
Ours	Yes	Yes	Yes	54.86
Ours ^{SV}	Yes	Yes	Yes	39.56
Ours ^{BOC}	Yes	Yes	Yes	46.37
Ours ^{BOC, SV, S}	Yes	Yes	Yes	33.07
Ours ^{BOC, SV}	Yes	Yes	Yes	30.13
Iskakov et al. (2019)	No	Yes	Yes	20.80
He et al. (2020)	No	Yes	Yes	19.00

Conclusion

- A bone orientation constraint (BOC) to recover the pose parameter independently from the shape parameter;
- A more precise initialization for the simultaneous optimization of pose and shape parameters thanks to the BOC;
- A two-step optimization process that improves the accuracy of the pose and shape estimations.
- Shift vectors

THANK YOU!

