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- % One of the most common practices.
N v | Tro s OVAs are fertilized in a lab environment.
— °I° : ¢ Incubated for 3 or 5 days.
ertilization & Embryo srading

* Day3(a)[l].

1.  Number of cells.

2.  Quality of cells.
 Day5 (b)[2].

1. ICM quality.

2. TE quality.

3. Blastocyst expansion.
30% Success rates [3]
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Intelligent
Assisted
Embryo
Selection

% Automatic embryo grading.

* Compared against the accumulated decision of

multiple embryologists.

* Not completely indicative of the outcome.

¢ Implantation or Live-birth prediction.

* Hard to gather data.

* Mostly focused on single image analysis.

* Few methods based on time-lapse analysis.
Frames are assumed to have the same deciding
attributes.

I Different time windows, different attributes.
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Our
Proposals
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Time-lapse analysis.
Separated time window analysis.
* Day 3.
* Day 5.
Combined final prediction.
Data Length Scheduler (DLS)
* Regulates the training process.
*  Suppresses the adverse effects of training on
variable-length image sequences.
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Data

Time-lapse image sequences of 130 transferred embryos
(b) .

with known outcome.

15-minute interval frame capture.

5-Fold cross-validation.

IDENARK

*  Between 48-72" Hour.

* 96 Frames.

*  Training frames = 9984.

* Test frames = 2496.

Day 5:

e  Pass the 96" Hour.

e  Varied lengths (70 - 96).

e  Varied number of Train/test frames.

Image preparation.

* Cell crop & center:
a) Input b) Optical flow median
¢) Detected ROI"  d) Output

* Resize from 500x500 to 224x224
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Different development speeds, different sequence
lengths.

Slower developing embryos:

* Similar frames ~ repeated samples.

* Unbalanced training.

A data regularization method.

Regulating the training data based on sample’s lengths.
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S percentile groups of sequences based on the length.
Training starts with the first group.
Group replacing checkpoints.

Blelle
Checkpoint modes:

_.ength
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Model’s
Structure

Method

O

logy

Day 3 model.

Top path
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Bottom path = Day 5 model.
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Model’s
Structure

¢ Training:
* Independent path training.
 Automatic extraction of Day 3 and Day 5
sequences.
* Sequences are divided into frames.
*  Batch construction: only one frame per sequence.
¢ Testing:
 Automatic extraction of Day 3 and Day 5
sequences.
* Each sequences passes through its respective path.
* Score are averaged over the temporal dimension.
 Day 3 and Day 5 averaged together.
s Data Length Schedular (DLS) used in Day 5 training:
* Mode I.
e S=4.
 n=10.
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¢ DLS improves Day 5 model accuracy by 1.6%. 13
¢ Applying DLS to Day 3+ Day 5 model = 4.6% accuracy
Increase.

¢ Comparison against state of the art:
* 6% accuracy increase in implantation prediction.
e 2.6% accuracy improvement against live-birth
predictor model.

Table 1: Performance comparison on Embryo outcome prediction

Row
No Label format | Precision Recall Jaccard-Index Accurac

639 674 50.6 68.5
706 69.0 52.6 69.2
726 704 54.2 70.8
726 723 56.7 72.3
79.6 764 61.8 76.9
| Image CNNeclassifier [4] | Implantation| 63.6  63.6 46.7 62.8
711 727 56 70.9

Handmade feature classifier [5 Live-birth 61.5 60.5 44.0 62.0 Q

Image + Morphological factors CNN [6 702 714 553 743
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Conclusions *
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Future Work
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Our approach:

A deep-learning based system.

Capable of processing time-lapse embryo image
sequences.

Predict embryo implantation outcome.

Individual Day 3 and Day 5 analysis.

More accurate than using only one of the stages or
only single images.

DLS algorithm is a way to suppress the adverse effects
of training on length variant image sequences.
Future works:

Time window range analysis.

Al-based time series analysis of embryo

sequences.
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Thank You.
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